3 resultados para BOREHOLE GEOPHYSICAL METHODS
em Universitat de Girona, Spain
Resumo:
The aim of this workshop is to present the main methods of subsoil studies (namely mechanical and geophysical methods) to the Earth Sciences professorate. These methods frequently involve the use of specific material. The different methods are usually taught in the classroom where there is no real contact between the students and the equipment. Several activities, all of them taking place in surrounding areas of the university campus of Girona, will provide the assistants to the workshop with the opportunity of making measurements with different equipment. These activities will be made in the field so as to contribute to the resolution of a problem which will have been previously proposed. The problems presented are situations, most of them real, when subsoil investigation techniques are usually used. These cases have been employed as teaching-learning strategies with university and second grade students in the area of Girona. Finally, some examples of exercises involving the treatment of data obtained through subsoil investigation techniques are also presented to complement the workshop
Resumo:
The depth of the water table and the clay content are determinant factors for the exploitability of natural aggregates, such as the alluvial sands and gravels found on the fluvial domain of the Ter River. In this preliminary study, carried out in the Celri basin, we conclude that these variables can be determined by means of geophysical methods and recornmends the use of such methods in studies of regional character
Resumo:
The geometry of Riera de Tossa (Costa Brava, Catalonia) Pleistocene paleovalley has been studied by two geophysical prospecting methods: vertical electric sounding (VES-DC) and seismic refraction. The results show the existence of a sudden slope change of the thalweg that permits to differentiate two sections where erosion processes operated in unequal intensity. Based on geological and geomorphological available data, it can be inferred that this slope rupture is caused by the litological control imposed by the alineation of resistant materials, which limited the headward erosion extend of the creek during the Upper Pleistocene