3 resultados para Atmospheric Thermodynamics
em Universitat de Girona, Spain
Resumo:
There are two principal chemical concepts that are important for studying the natural environment. The first one is thermodynamics, which describes whether a system is at equilibrium or can spontaneously change by chemical reactions. The second main concept is how fast chemical reactions (kinetics or rate of chemical change) take place whenever they start. In this work we examine a natural system in which both thermodynamics and kinetic factors are important in determining the abundance of NH+4 , NO−2 and NO−3 in superficial waters. Samples were collected in the Arno Basin (Tuscany, Italy), a system in which natural and antrophic effects both contribute to highly modify the chemical composition of water. Thermodynamical modelling based on the reduction-oxidation reactions involving the passage NH+4 -> NO−2 -> NO−3 in equilibrium conditions has allowed to determine the Eh redox potential values able to characterise the state of each sample and, consequently, of the fluid environment from which it was drawn. Just as pH expresses the concentration of H+ in solution, redox potential is used to express the tendency of an environment to receive or supply electrons. In this context, oxic environments, as those of river systems, are said to have a high redox potential because O2 is available as an electron acceptor. Principles of thermodynamics and chemical kinetics allow to obtain a model that often does not completely describe the reality of natural systems. Chemical reactions may indeed fail to achieve equilibrium because the products escape from the site of the rection or because reactions involving the trasformation are very slow, so that non-equilibrium conditions exist for long periods. Moreover, reaction rates can be sensitive to poorly understood catalytic effects or to surface effects, while variables as concentration (a large number of chemical species can coexist and interact concurrently), temperature and pressure can have large gradients in natural systems. By taking into account this, data of 91 water samples have been modelled by using statistical methodologies for compositional data. The application of log–contrast analysis has allowed to obtain statistical parameters to be correlated with the calculated Eh values. In this way, natural conditions in which chemical equilibrium is hypothesised, as well as underlying fast reactions, are compared with those described by a stochastic approach
Resumo:
Atmospheric downwelling longwave radiation is an important component of the terrestrial energy budget; since it is strongly related with the greenhouse effect, it remarkably affects the climate. In this study, I evaluate the estimation of the downwelling longwave irradiance at the terrestrial surface for cloudless and overcast conditions using a one-dimensional radiative transfer model (RTM), specifically the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). The calculations performed by using this model were compared with pyrgeometer measurements at three different European places: Girona (NE of the Iberian Peninsula), Payerne (in the East of Switzerland), and Heselbach (in the Black Forest, Germany). Several studies of sensitivity based on the radiative transfer model have shown that special attention on the input of temperature and water content profiles must be held for cloudless sky conditions; for overcast conditions, similar sensitivity studies have shown that, besides the atmospheric profiles, the cloud base height is very relevant, at least for optically thick clouds. Also, the estimation of DLR in places where radiosoundings are not available is explored, either by using the atmospheric profiles spatially interpolated from the gridded analysis data provided by European Centre of Medium-Range Weather Forecast (ECMWF), or by applying a real radiosounding of a nearby site. Calculations have been compared with measurements at all sites. During cloudless sky conditions, when radiosoundings were available, calculations show differences with measurements of -2.7 ± 3.4 Wm-2 (Payerne). While no in situ radiosoundings are available, differences between modeling and measurements were about 0.3 ± 9.4 Wm-2 (Girona). During overcast sky conditions, when in situ radiosoundings and cloud properties (derived from an algorithm that uses spectral infrared and microwave ground based measurements) were available (Black Forest), calculations show differences with measurements of -0.28 ± 2.52 Wm2. When using atmospheric profiles from the ECMWF and fixed values of liquid water path and droplet effective radius (Girona) calculations show differences with measurements of 4.0 ± 2.5 Wm2. For all analyzed sky conditions, it has been confirmed that estimations from radiative transfer modeling are remarkably better than those obtained by simple parameterizations of atmospheric emissivity.
Resumo:
Human activities have been interfering with the natural biogeochemical cycles of trace elements since the ancient civilizations. Although they are inaccessible and remote, high mountain lake catchments are irrefutably trace-element contaminated by anthropogenic emissions, which can travel by long-range atmospheric transport before they are deposited. This has been revealed by several natural archives. High mountain lake catchments are thus excellent sentinels of long-range contamination. Continuous accumulation can lead to a build up of potentially toxic trace elements in these remote, or relatively remote, ecosystems. The thesis focuses on the biogeochemistry of a suite of trace elements of environmental concern (Ni, Cu, Zn, As, Se, Cd and Pb) in Pyrenean lake catchments, with special emphasis on discerning the “natural” components from the “anthropogenic” contributions. Five other metallic elements (Al, Fe, Ti, Mn and Zr) have also been studied to trace natural fluxes and biogeochemical processes within the lake catchment systems.