4 resultados para Application of Bacillus amylases in industry
em Universitat de Girona, Spain
Resumo:
El sector de pasta i paper és considerat un dels set sectors industrials més intensius en consum energètic. La producció i consum d'electricitat i de vapor esdevenen les fonts majoritàries d'emissions de gasos d'efecte hivernacle en aquest sector industrial. Les fàbriques papereres poden assolir objectius de reducció d'emissions mitjançant reducció en origen (substitució de combustibles, introducció d'energies renovables) o bé a partir de mesures d'eficiència energètica en el propi procés. En aquest context, s'ha desenvolupat un mètode de distribució d'emissions que permet assignar a cada unitat d'operació del procés paperer, el seu grau de responsabilitat en emissions. També s'han avaluat diferents mètodes de càlcul de factors d'emissió de vapor i electricitat, tant per plantes de cogeneració com per sistemes individuals. A partir d'aquesta avaluació s'han proposat nous mètodes alternatius als analitzats. Aquests mètodes i els factors d'emissions s'han aplicat a dues fàbriques papereres catalanes.
Resumo:
Precision of released figures is not only an important quality feature of official statistics, it is also essential for a good understanding of the data. In this paper we show a case study of how precision could be conveyed if the multivariate nature of data has to be taken into account. In the official release of the Swiss earnings structure survey, the total salary is broken down into several wage components. We follow Aitchison's approach for the analysis of compositional data, which is based on logratios of components. We first present diferent multivariate analyses of the compositional data whereby the wage components are broken down by economic activity classes. Then we propose a number of ways to assess precision
Resumo:
The application of Discriminant function analysis (DFA) is not a new idea in the study of tephrochrology. In this paper, DFA is applied to compositional datasets of two different types of tephras from Mountain Ruapehu in New Zealand and Mountain Rainier in USA. The canonical variables from the analysis are further investigated with a statistical methodology of change-point problems in order to gain a better understanding of the change in compositional pattern over time. Finally, a special case of segmented regression has been proposed to model both the time of change and the change in pattern. This model can be used to estimate the age for the unknown tephras using Bayesian statistical calibration
Resumo:
A new method for the automated selection of colour features is described. The algorithm consists of two stages of processing. In the first, a complete set of colour features is calculated for every object of interest in an image. In the second stage, each object is mapped into several n-dimensional feature spaces in order to select the feature set with the smallest variables able to discriminate the remaining objects. The evaluation of the discrimination power for each concrete subset of features is performed by means of decision trees composed of linear discrimination functions. This method can provide valuable help in outdoor scene analysis where no colour space has been demonstrated as being the most suitable. Experiment results recognizing objects in outdoor scenes are reported