13 resultados para Analysis Tools
em Universitat de Girona, Spain
Resumo:
We propose to analyze shapes as “compositions” of distances in Aitchison geometry as an alternate and complementary tool to classical shape analysis, especially when size is non-informative. Shapes are typically described by the location of user-chosen landmarks. However the shape – considered as invariant under scaling, translation, mirroring and rotation – does not uniquely define the location of landmarks. A simple approach is to use distances of landmarks instead of the locations of landmarks them self. Distances are positive numbers defined up to joint scaling, a mathematical structure quite similar to compositions. The shape fixes only ratios of distances. Perturbations correspond to relative changes of the size of subshapes and of aspect ratios. The power transform increases the expression of the shape by increasing distance ratios. In analogy to the subcompositional consistency, results should not depend too much on the choice of distances, because different subsets of the pairwise distances of landmarks uniquely define the shape. Various compositional analysis tools can be applied to sets of distances directly or after minor modifications concerning the singularity of the covariance matrix and yield results with direct interpretations in terms of shape changes. The remaining problem is that not all sets of distances correspond to a valid shape. Nevertheless interpolated or predicted shapes can be backtransformated by multidimensional scaling (when all pairwise distances are used) or free geodetic adjustment (when sufficiently many distances are used)
Resumo:
On last years we have seen an increase on the use of GIS technologies as analysis tools on the field of historical research. The study of landscape, and how it has influenced the development of History is a focal point of research fields like archaeology and battlefield analysis, and we are seeing nowadays how its use is spreading. (...)
Resumo:
Una de las actuaciones posibles para la gestión de los residuos sólidos urbanos es la valorización energética, es decir la incineración con recuperación de energía. Sin embargo es muy importante controlar adecuadamente el proceso de incineración para evitar en lo posible la liberación de sustancias contaminantes a la atmósfera que puedan ocasionar problemas de contaminación industrial.Conseguir que tanto el proceso de incineración como el tratamiento de los gases se realice en condiciones óptimas presupone tener un buen conocimiento de las dependencias entre las variables de proceso. Se precisan métodos adecuados de medida de las variables más importantes y tratar los valores medidos con modelos adecuados para transformarlos en magnitudes de mando. Un modelo clásico para el control parece poco prometedor en este caso debido a la complejidad de los procesos, la falta de descripción cuantitativa y la necesidad de hacer los cálculos en tiempo real. Esto sólo se puede conseguir con la ayuda de las modernas técnicas de proceso de datos y métodos informáticos, tales como el empleo de técnicas de simulación, modelos matemáticos, sistemas basados en el conocimiento e interfases inteligentes. En [Ono, 1989] se describe un sistema de control basado en la lógica difusa aplicado al campo de la incineración de residuos urbanos. En el centro de investigación FZK de Karslruhe se están desarrollando aplicaciones que combinan la lógica difusa con las redes neuronales [Jaeschke, Keller, 1994] para el control de la planta piloto de incineración de residuos TAMARA. En esta tesis se plantea la aplicación de un método de adquisición de conocimiento para el control de sistemas complejos inspirado en el comportamiento humano. Cuando nos encontramos ante una situación desconocida al principio no sabemos como actuar, salvo por la extrapolación de experiencias anteriores que puedan ser útiles. Aplicando procedimientos de prueba y error, refuerzo de hipótesis, etc., vamos adquiriendo y refinando el conocimiento, y elaborando un modelo mental. Podemos diseñar un método análogo, que pueda ser implementado en un sistema informático, mediante el empleo de técnicas de Inteligencia Artificial.Así, en un proceso complejo muchas veces disponemos de un conjunto de datos del proceso que a priori no nos dan información suficientemente estructurada para que nos sea útil. Para la adquisición de conocimiento pasamos por una serie de etapas: - Hacemos una primera selección de cuales son las variables que nos interesa conocer. - Estado del sistema. En primer lugar podemos empezar por aplicar técnicas de clasificación (aprendizaje no supervisado) para agrupar los datos y obtener una representación del estado de la planta. Es posible establecer una clasificación, pero normalmente casi todos los datos están en una sola clase, que corresponde a la operación normal. Hecho esto y para refinar el conocimiento utilizamos métodos estadísticos clásicos para buscar correlaciones entre variables (análisis de componentes principales) y así poder simplificar y reducir la lista de variables. - Análisis de las señales. Para analizar y clasificar las señales (por ejemplo la temperatura del horno) es posible utilizar métodos capaces de describir mejor el comportamiento no lineal del sistema, como las redes neuronales. Otro paso más consiste en establecer relaciones causales entre las variables. Para ello nos sirven de ayuda los modelos analíticos - Como resultado final del proceso se pasa al diseño del sistema basado en el conocimiento. El objetivo principal es aplicar el método al caso concreto del control de una planta de tratamiento de residuos sólidos urbanos por valorización energética. En primer lugar, en el capítulo 2 Los residuos sólidos urbanos, se trata el problema global de la gestión de los residuos, dando una visión general de las diferentes alternativas existentes, y de la situación nacional e internacional en la actualidad. Se analiza con mayor detalle la problemática de la incineración de los residuos, poniendo especial interés en aquellas características de los residuos que tienen mayor importancia de cara al proceso de combustión.En el capítulo 3, Descripción del proceso, se hace una descripción general del proceso de incineración y de los distintos elementos de una planta incineradora: desde la recepción y almacenamiento de los residuos, pasando por los distintos tipos de hornos y las exigencias de los códigos de buena práctica de combustión, el sistema de aire de combustión y el sistema de humos. Se presentan también los distintos sistemas de depuración de los gases de combustión, y finalmente el sistema de evacuación de cenizas y escorias.El capítulo 4, La planta de tratamiento de residuos sólidos urbanos de Girona, describe los principales sistemas de la planta incineradora de Girona: la alimentación de residuos, el tipo de horno, el sistema de recuperación de energía, y el sistema de depuración de los gases de combustión Se describe también el sistema de control, la operación, los datos de funcionamiento de la planta, la instrumentación y las variables que son de interés para el control del proceso de combustión.En el capítulo 5, Técnicas utilizadas, se proporciona una visión global de los sistemas basados en el conocimiento y de los sistemas expertos. Se explican las diferentes técnicas utilizadas: redes neuronales, sistemas de clasificación, modelos cualitativos, y sistemas expertos, ilustradas con algunos ejemplos de aplicación.Con respecto a los sistemas basados en el conocimiento se analizan en primer lugar las condiciones para su aplicabilidad, y las formas de representación del conocimiento. A continuación se describen las distintas formas de razonamiento: redes neuronales, sistemas expertos y lógica difusa, y se realiza una comparación entre ellas. Se presenta una aplicación de las redes neuronales al análisis de series temporales de temperatura.Se trata también la problemática del análisis de los datos de operación mediante técnicas estadísticas y el empleo de técnicas de clasificación. Otro apartado está dedicado a los distintos tipos de modelos, incluyendo una discusión de los modelos cualitativos.Se describe el sistema de diseño asistido por ordenador para el diseño de sistemas de supervisión CASSD que se utiliza en esta tesis, y las herramientas de análisis para obtener información cualitativa del comportamiento del proceso: Abstractores y ALCMEN. Se incluye un ejemplo de aplicación de estas técnicas para hallar las relaciones entre la temperatura y las acciones del operador. Finalmente se analizan las principales características de los sistemas expertos en general, y del sistema experto CEES 2.0 que también forma parte del sistema CASSD que se ha utilizado.El capítulo 6, Resultados, muestra los resultados obtenidos mediante la aplicación de las diferentes técnicas, redes neuronales, clasificación, el desarrollo de la modelización del proceso de combustión, y la generación de reglas. Dentro del apartado de análisis de datos se emplea una red neuronal para la clasificación de una señal de temperatura. También se describe la utilización del método LINNEO+ para la clasificación de los estados de operación de la planta.En el apartado dedicado a la modelización se desarrolla un modelo de combustión que sirve de base para analizar el comportamiento del horno en régimen estacionario y dinámico. Se define un parámetro, la superficie de llama, relacionado con la extensión del fuego en la parrilla. Mediante un modelo linealizado se analiza la respuesta dinámica del proceso de incineración. Luego se pasa a la definición de relaciones cualitativas entre las variables que se utilizan en la elaboración de un modelo cualitativo. A continuación se desarrolla un nuevo modelo cualitativo, tomando como base el modelo dinámico analítico.Finalmente se aborda el desarrollo de la base de conocimiento del sistema experto, mediante la generación de reglas En el capítulo 7, Sistema de control de una planta incineradora, se analizan los objetivos de un sistema de control de una planta incineradora, su diseño e implementación. Se describen los objetivos básicos del sistema de control de la combustión, su configuración y la implementación en Matlab/Simulink utilizando las distintas herramientas que se han desarrollado en el capítulo anterior.Por último para mostrar como pueden aplicarse los distintos métodos desarrollados en esta tesis se construye un sistema experto para mantener constante la temperatura del horno actuando sobre la alimentación de residuos.Finalmente en el capítulo Conclusiones, se presentan las conclusiones y resultados de esta tesis.
Resumo:
La aplicación de materiales compuestos de matriz polimérica reforzados mediante fibras largas (FRP, Fiber Reinforced Plastic), está en gradual crecimiento debido a las buenas propiedades específicas y a la flexibilidad en el diseño. Uno de los mayores consumidores es la industria aeroespacial, dado que la aplicación de estos materiales tiene claros beneficios económicos y medioambientales. Cuando los materiales compuestos se aplican en componentes estructurales, se inicia un programa de diseño donde se combinan ensayos reales y técnicas de análisis. El desarrollo de herramientas de análisis fiables que permiten comprender el comportamiento mecánico de la estructura, así como reemplazar muchos, pero no todos, los ensayos reales, es de claro interés. Susceptibilidad al daño debido a cargas de impacto fuera del plano es uno de los aspectos de más importancia que se tienen en cuenta durante el proceso de diseño de estructuras de material compuesto. La falta de conocimiento de los efectos del impacto en estas estructuras es un factor que limita el uso de estos materiales. Por lo tanto, el desarrollo de modelos de ensayo virtual mecánico para analizar la resistencia a impacto de una estructura es de gran interés, pero aún más, la predicción de la resistencia residual después del impacto. En este sentido, el presente trabajo abarca un amplio rango de análisis de eventos de impacto a baja velocidad en placas laminadas de material compuesto, monolíticas, planas, rectangulares, y con secuencias de apilamiento convencionales. Teniendo en cuenta que el principal objetivo del presente trabajo es la predicción de la resistencia residual a compresión, diferentes tareas se llevan a cabo para favorecer el adecuado análisis del problema. Los temas que se desarrollan son: la descripción analítica del impacto, el diseño y la realización de un plan de ensayos experimentales, la formulación e implementación de modelos constitutivos para la descripción del comportamiento del material, y el desarrollo de ensayos virtuales basados en modelos de elementos finitos en los que se usan los modelos constitutivos implementados.
Resumo:
This paper presents a tool for the analysis and regeneration of Web contents, implemented through XML and Java. At the moment, the Web content delivery from server to clients is carried out without taking into account clients' characteristics. Heterogeneous and diverse characteristics, such as user's preferences, different capacities of the client's devices, different types of access, state of the network and current load on the server, directly affect the behavior of Web services. On the other hand, the growing use of multimedia objects in the design of Web contents is made without taking into account this diversity and heterogeneity. It affects, even more, the appropriate content delivery. Thus, the objective of the presented tool is the treatment of Web pages taking into account the mentioned heterogeneity and adapting contents in order to improve the performance on the Web
Resumo:
”compositions” is a new R-package for the analysis of compositional and positive data. It contains four classes corresponding to the four different types of compositional and positive geometry (including the Aitchison geometry). It provides means for computation, plotting and high-level multivariate statistical analysis in all four geometries. These geometries are treated in an fully analogous way, based on the principle of working in coordinates, and the object-oriented programming paradigm of R. In this way, called functions automatically select the most appropriate type of analysis as a function of the geometry. The graphical capabilities include ternary diagrams and tetrahedrons, various compositional plots (boxplots, barplots, piecharts) and extensive graphical tools for principal components. Afterwards, ortion and proportion lines, straight lines and ellipses in all geometries can be added to plots. The package is accompanied by a hands-on-introduction, documentation for every function, demos of the graphical capabilities and plenty of usage examples. It allows direct and parallel computation in all four vector spaces and provides the beginner with a copy-and-paste style of data analysis, while letting advanced users keep the functionality and customizability they demand of R, as well as all necessary tools to add own analysis routines. A complete example is included in the appendix
Resumo:
Developments in the statistical analysis of compositional data over the last two decades have made possible a much deeper exploration of the nature of variability, and the possible processes associated with compositional data sets from many disciplines. In this paper we concentrate on geochemical data sets. First we explain how hypotheses of compositional variability may be formulated within the natural sample space, the unit simplex, including useful hypotheses of subcompositional discrimination and specific perturbational change. Then we develop through standard methodology, such as generalised likelihood ratio tests, statistical tools to allow the systematic investigation of a complete lattice of such hypotheses. Some of these tests are simple adaptations of existing multivariate tests but others require special construction. We comment on the use of graphical methods in compositional data analysis and on the ordination of specimens. The recent development of the concept of compositional processes is then explained together with the necessary tools for a staying- in-the-simplex approach, namely compositional singular value decompositions. All these statistical techniques are illustrated for a substantial compositional data set, consisting of 209 major-oxide and rare-element compositions of metamorphosed limestones from the Northeast and Central Highlands of Scotland. Finally we point out a number of unresolved problems in the statistical analysis of compositional processes
Resumo:
The low levels of unemployment recorded in the UK in recent years are widely cited as evidence of the country’s improved economic performance, and the apparent convergence of unemployment rates across the country’s regions used to suggest that the longstanding divide in living standards between the relatively prosperous ‘south’ and the more depressed ‘north’ has been substantially narrowed. Dissenters from these conclusions have drawn attention to the greatly increased extent of non-employment (around a quarter of the UK’s working age population are not in employment) and the marked regional dimension in its distribution across the country. Amongst these dissenters it is generally agreed that non-employment is concentrated amongst older males previously employed in the now very much smaller ‘heavy’ industries (e.g. coal, steel, shipbuilding). This paper uses the tools of compositiona l data analysis to provide a much richer picture of non-employment and one which challenges the conventional analysis wisdom about UK labour market performance as well as the dissenters view of the nature of the problem. It is shown that, associated with the striking ‘north/south’ divide in nonemployment rates, there is a statistically significant relationship between the size of the non-employment rate and the composition of non-employment. Specifically, it is shown that the share of unemployment in non-employment is negatively correlated with the overall non-employment rate: in regions where the non-employment rate is high the share of unemployment is relatively low. So the unemployment rate is not a very reliable indicator of regional disparities in labour market performance. Even more importantly from a policy viewpoint, a significant positive relationship is found between the size of the non-employment rate and the share of those not employed through reason of sickness or disability and it seems (contrary to the dissenters) that this connection is just as strong for women as it is for men
Resumo:
Compositional random vectors are fundamental tools in the Bayesian analysis of categorical data. Many of the issues that are discussed with reference to the statistical analysis of compositional data have a natural counterpart in the construction of a Bayesian statistical model for categorical data. This note builds on the idea of cross-fertilization of the two areas recommended by Aitchison (1986) in his seminal book on compositional data. Particular emphasis is put on the problem of what parameterization to use
Resumo:
Most of economic literature has presented its analysis under the assumption of homogeneous capital stock. However, capital composition differs across countries. What has been the pattern of capital composition associated with World economies? We make an exploratory statistical analysis based on compositional data transformed by Aitchinson logratio transformations and we use tools for visualizing and measuring statistical estimators of association among the components. The goal is to detect distinctive patterns in the composition. As initial findings could be cited that: 1. Sectorial components behaved in a correlated way, building industries on one side and , in a less clear view, equipment industries on the other. 2. Full sample estimation shows a negative correlation between durable goods component and other buildings component and between transportation and building industries components. 3. Countries with zeros in some components are mainly low income countries at the bottom of the income category and behaved in a extreme way distorting main results observed in the full sample. 4. After removing these extreme cases, conclusions seem not very sensitive to the presence of another isolated cases
Resumo:
The log-ratio methodology makes available powerful tools for analyzing compositional data. Nevertheless, the use of this methodology is only possible for those data sets without null values. Consequently, in those data sets where the zeros are present, a previous treatment becomes necessary. Last advances in the treatment of compositional zeros have been centered especially in the zeros of structural nature and in the rounded zeros. These tools do not contemplate the particular case of count compositional data sets with null values. In this work we deal with \count zeros" and we introduce a treatment based on a mixed Bayesian-multiplicative estimation. We use the Dirichlet probability distribution as a prior and we estimate the posterior probabilities. Then we apply a multiplicative modi¯cation for the non-zero values. We present a case study where this new methodology is applied. Key words: count data, multiplicative replacement, composition, log-ratio analysis
Resumo:
In an earlier investigation (Burger et al., 2000) five sediment cores near the Rodrigues Triple Junction in the Indian Ocean were studied applying classical statistical methods (fuzzy c-means clustering, linear mixing model, principal component analysis) for the extraction of endmembers and evaluating the spatial and temporal variation of geochemical signals. Three main factors of sedimentation were expected by the marine geologists: a volcano-genetic, a hydro-hydrothermal and an ultra-basic factor. The display of fuzzy membership values and/or factor scores versus depth provided consistent results for two factors only; the ultra-basic component could not be identified. The reason for this may be that only traditional statistical methods were applied, i.e. the untransformed components were used and the cosine-theta coefficient as similarity measure. During the last decade considerable progress in compositional data analysis was made and many case studies were published using new tools for exploratory analysis of these data. Therefore it makes sense to check if the application of suitable data transformations, reduction of the D-part simplex to two or three factors and visual interpretation of the factor scores would lead to a revision of earlier results and to answers to open questions . In this paper we follow the lines of a paper of R. Tolosana- Delgado et al. (2005) starting with a problem-oriented interpretation of the biplot scattergram, extracting compositional factors, ilr-transformation of the components and visualization of the factor scores in a spatial context: The compositional factors will be plotted versus depth (time) of the core samples in order to facilitate the identification of the expected sources of the sedimentary process. Kew words: compositional data analysis, biplot, deep sea sediments
Resumo:
The proposal presented in this thesis is to provide designers of knowledge based supervisory systems of dynamic systems with a framework to facilitate their tasks avoiding interface problems among tools, data flow and management. The approach is thought to be useful to both control and process engineers in assisting their tasks. The use of AI technologies to diagnose and perform control loops and, of course, assist process supervisory tasks such as fault detection and diagnose, are in the scope of this work. Special effort has been put in integration of tools for assisting expert supervisory systems design. With this aim the experience of Computer Aided Control Systems Design (CACSD) frameworks have been analysed and used to design a Computer Aided Supervisory Systems (CASSD) framework. In this sense, some basic facilities are required to be available in this proposed framework: ·