7 resultados para Algebraic Polynomials
em Universitat de Girona, Spain
Resumo:
The algebraic-geometric structure of the simplex, known as Aitchison geometry, is used to look at the Dirichlet family of distributions from a new perspective. A classical Dirichlet density function is expressed with respect to the Lebesgue measure on real space. We propose here to change this measure by the Aitchison measure on the simplex, and study some properties and characteristic measures of the resulting density
Resumo:
First discussion on compositional data analysis is attributable to Karl Pearson, in 1897. However, notwithstanding the recent developments on algebraic structure of the simplex, more than twenty years after Aitchison’s idea of log-transformations of closed data, scientific literature is again full of statistical treatments of this type of data by using traditional methodologies. This is particularly true in environmental geochemistry where besides the problem of the closure, the spatial structure (dependence) of the data have to be considered. In this work we propose the use of log-contrast values, obtained by a simplicial principal component analysis, as LQGLFDWRUV of given environmental conditions. The investigation of the log-constrast frequency distributions allows pointing out the statistical laws able to generate the values and to govern their variability. The changes, if compared, for example, with the mean values of the random variables assumed as models, or other reference parameters, allow defining monitors to be used to assess the extent of possible environmental contamination. Case study on running and ground waters from Chiavenna Valley (Northern Italy) by using Na+, K+, Ca2+, Mg2+, HCO3-, SO4 2- and Cl- concentrations will be illustrated
Resumo:
The preceding two editions of CoDaWork included talks on the possible consideration of densities as infinite compositions: Egozcue and D´ıaz-Barrero (2003) extended the Euclidean structure of the simplex to a Hilbert space structure of the set of densities within a bounded interval, and van den Boogaart (2005) generalized this to the set of densities bounded by an arbitrary reference density. From the many variations of the Hilbert structures available, we work with three cases. For bounded variables, a basis derived from Legendre polynomials is used. For variables with a lower bound, we standardize them with respect to an exponential distribution and express their densities as coordinates in a basis derived from Laguerre polynomials. Finally, for unbounded variables, a normal distribution is used as reference, and coordinates are obtained with respect to a Hermite-polynomials-based basis. To get the coordinates, several approaches can be considered. A numerical accuracy problem occurs if one estimates the coordinates directly by using discretized scalar products. Thus we propose to use a weighted linear regression approach, where all k- order polynomials are used as predictand variables and weights are proportional to the reference density. Finally, for the case of 2-order Hermite polinomials (normal reference) and 1-order Laguerre polinomials (exponential), one can also derive the coordinates from their relationships to the classical mean and variance. Apart of these theoretical issues, this contribution focuses on the application of this theory to two main problems in sedimentary geology: the comparison of several grain size distributions, and the comparison among different rocks of the empirical distribution of a property measured on a batch of individual grains from the same rock or sediment, like their composition
Resumo:
Optimum experimental designs depend on the design criterion, the model and the design region. The talk will consider the design of experiments for regression models in which there is a single response with the explanatory variables lying in a simplex. One example is experiments on various compositions of glass such as those considered by Martin, Bursnall, and Stillman (2001). Because of the highly symmetric nature of the simplex, the class of models that are of interest, typically Scheff´e polynomials (Scheff´e 1958) are rather different from those of standard regression analysis. The optimum designs are also rather different, inheriting a high degree of symmetry from the models. In the talk I will hope to discuss a variety of modes for such experiments. Then I will discuss constrained mixture experiments, when not all the simplex is available for experimentation. Other important aspects include mixture experiments with extra non-mixture factors and the blocking of mixture experiments. Much of the material is in Chapter 16 of Atkinson, Donev, and Tobias (2007). If time and my research allows, I would hope to finish with a few comments on design when the responses, rather than the explanatory variables, lie in a simplex. References Atkinson, A. C., A. N. Donev, and R. D. Tobias (2007). Optimum Experimental Designs, with SAS. Oxford: Oxford University Press. Martin, R. J., M. C. Bursnall, and E. C. Stillman (2001). Further results on optimal and efficient designs for constrained mixture experiments. In A. C. Atkinson, B. Bogacka, and A. Zhigljavsky (Eds.), Optimal Design 2000, pp. 225–239. Dordrecht: Kluwer. Scheff´e, H. (1958). Experiments with mixtures. Journal of the Royal Statistical Society, Ser. B 20, 344–360. 1
Resumo:
The occurrence of negative values for Fukui functions was studied through the electronegativity equalization method. Using algebraic relations between Fukui functions and different other conceptual DFT quantities on the one hand and the hardness matrix on the other hand, expressions were obtained for Fukui functions for several archetypical small molecules. Based on EEM calculations for large molecular sets, no negative Fukui functions were found
Resumo:
Two common methods of accounting for electric-field-induced perturbations to molecular vibration are analyzed and compared. The first method is based on a perturbation-theoretic treatment and the second on a finite-field treatment. The relationship between the two, which is not immediately apparent, is made by developing an algebraic formalism for the latter. Some of the higher-order terms in this development are documented here for the first time. As well as considering vibrational dipole polarizabilities and hyperpolarizabilities, we also make mention of the vibrational Stark effec
Resumo:
Molts sistemes mecànics existents tenen un comportament vibratori funcionalment perceptible, que es posa de manifest enfront d'excitacions transitòries. Normalment, les vibracions generades segueixen presents després del transitori (vibracions residuals), i poden provocar efectes negatius en la funció de disseny del mecanisme. El mètode que es proposa en aquesta tesi té com a objectiu principal la síntesi de lleis de moviment per reduir les vibracions residuals. Addicionalment, els senyals generats permeten complir dues condicions definides per l'usuari (anomenats requeriments funcionals). El mètode es fonamenta en la relació existent entre el contingut freqüencial d'un senyal transitori, i la vibració residual generada, segons sigui l'esmorteïment del sistema. Basat en aquesta relació, i aprofitant les propietats de la transformada de Fourier, es proposa la generació de lleis de moviment per convolució temporal de polsos. Aquestes resulten formades per trams concatenats de polinomis algebraics, cosa que facilita la seva implementació en entorns numèrics per mitjà de corbes B-spline.