2 resultados para Agriculture Forecasting

em Universitat de Girona, Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planners in public and private institutions would like coherent forecasts of the components of age-specic mortality, such as causes of death. This has been di cult to achieve because the relative values of the forecast components often fail to behave in a way that is coherent with historical experience. In addition, when the group forecasts are combined the result is often incompatible with an all-groups forecast. It has been shown that cause-specic mortality forecasts are pessimistic when compared with all-cause forecasts (Wilmoth, 1995). This paper abandons the conventional approach of using log mortality rates and forecasts the density of deaths in the life table. Since these values obey a unit sum constraint for both conventional single-decrement life tables (only one absorbing state) and multiple-decrement tables (more than one absorbing state), they are intrinsically relative rather than absolute values across decrements as well as ages. Using the methods of Compositional Data Analysis pioneered by Aitchison (1986), death densities are transformed into the real space so that the full range of multivariate statistics can be applied, then back-transformed to positive values so that the unit sum constraint is honoured. The structure of the best-known, single-decrement mortality-rate forecasting model, devised by Lee and Carter (1992), is expressed in compositional form and the results from the two models are compared. The compositional model is extended to a multiple-decrement form and used to forecast mortality by cause of death for Japan

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origins of early farming and its spread to Europe have been the subject of major interest for some time. The main controversy today is over the nature of the Neolithic transition in Europe: the extent to which the spread was, for the most part, indigenous and animated by imitatio (cultural diffusion) or else was driven by an influx of dispersing populations (demic diffusion). We analyze the spatiotemporal dynamics of the transition using radiocarbon dates from 735 early Neolithic sites in Europe, the Near East, and Anatolia. We compute great-circle and shortest-path distances from each site to 35 possible agricultural centers of origin—ten are based on early sites in the Middle East and 25 are hypothetical locations set at 58 latitude/longitude intervals. We perform a linear fit of distance versus age (and vice versa) for each center. For certain centers, high correlation coefficients (R . 0.8) are obtained. This implies that a steady rate or speed is a good overall approximation for this historical development. The average rate of the Neolithic spread over Europe is 0.6–1.3 km/y (95% confidence interval). This is consistent with the prediction of demic diffusion(0.6–1.1 km/y). An interpolative map of correlation coefficients, obtained by using shortest-path distances, shows that the origins of agriculture were most likely to have occurred in the northern Levantine/Mesopotamian area