3 resultados para Active linear feedback control
em Universitat de Girona, Spain
Resumo:
The H∞ synchronization problem of the master and slave structure of a second-order neutral master-slave systems with time-varying delays is presented in this paper. Delay-dependent sufficient conditions for the design of a delayed output-feedback control are given by Lyapunov-Krasovskii method in terms of a linear matrix inequality (LMI). A controller, which guarantees H∞ synchronization of the master and slave structure using some free weighting matrices, is then developed. A numerical example has been given to show the effectiveness of the method
Resumo:
This paper deals with the problem of stabilizing a class of structures subject to an uncertain excitation due to the temporary coupling of the main system with another uncertain dynamical subsystem. A Lyapunov function based control scheme is proposed to attenuate the structural vibration. In the control design, the actuator dynamics is taken into account. The control scheme is implemented by using only feedback information of the main system. The effectiveness of the control scheme is shown for a bridge platform with crossing vehicle
Resumo:
This paper shows the impact of the atomic capabilities concept to include control-oriented knowledge of linear control systems in the decisions making structure of physical agents. These agents operate in a real environment managing physical objects (e.g. their physical bodies) in coordinated tasks. This approach is presented using an introspective reasoning approach and control theory based on the specific tasks of passing a ball and executing the offside manoeuvre between physical agents in the robotic soccer testbed. Experimental results and conclusions are presented, emphasising the advantages of our approach that improve the multi-agent performance in cooperative systems