6 resultados para AUV path planning

em Universitat de Girona, Spain


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Path planning and control strategies applied to autonomous mobile robots should fulfil safety rules as well as achieve final goals. Trajectory planning applications should be fast and flexible to allow real time implementations as well as environment interactions. The methodology presented uses the on robot information as the meaningful data necessary to plan a narrow passage by using a corridor based on attraction potential fields that approaches the mobile robot to the final desired configuration. It employs local and dense occupancy grid perception to avoid collisions. The key goals of this research project are computational simplicity as well as the possibility of integrating this method with other methods reported by the research community. Another important aspect of this work consist in testing the proposed method by using a mobile robot with a perception system composed of a monocular camera and odometers placed on the two wheels of the differential driven motion system. Hence, visual data are used as a local horizon of perception in which trajectories without collisions are computed by satisfying final goal approaches and safety criteria

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article presents recent WMR (wheeled mobile robot) navigation experiences using local perception knowledge provided by monocular and odometer systems. A local narrow perception horizon is used to plan safety trajectories towards the objective. Therefore, monocular data are proposed as a way to obtain real time local information by building two dimensional occupancy grids through a time integration of the frames. The path planning is accomplished by using attraction potential fields, while the trajectory tracking is performed by using model predictive control techniques. The results are faced to indoor situations by using the lab available platform consisting in a differential driven mobile robot

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work extends a previously developed research concerning about the use of local model predictive control in differential driven mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are briefly introduced. In this sense, monocular image data can be used to plan safety trajectories by using goal attraction potential fields

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aquesta tesi està inspirada en els agents naturals per tal de planificar de manera dinàmica la navegació d'un robot diferencial de dues rodes. Les dades dels sistemes de percepció són integrades dins una graella d'ocupació de l'entorn local del robot. La planificació de les trajectòries es fa considerant la configuració desitjada del robot, així com els vértexs més significatius dels obstacles més propers. En el seguiment de les trajectòries s'utilitzen tècniques locals de control predictiu basades en el model, amb horitzons de predicció inferiors a un segon. La metodologia emprada és validada mitjançant nombrosos experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes MSISpIC, a probabilistic sonar scan matching algorithm for the localization of an autonomous underwater vehicle (AUV). The technique uses range scans gathered with a Mechanical Scanning Imaging Sonar (MSIS), the robot displacement estimated through dead-reckoning using a Doppler velocity log (DVL) and a motion reference unit (MRU). The proposed method is an extension of the pIC algorithm. An extended Kalman filter (EKF) is used to estimate the robot-path during the scan in order to reference all the range and bearing measurements as well as their uncertainty to a scan fixed frame before registering. The major contribution consists of experimentally proving that probabilistic sonar scan matching techniques have the potential to improve the DVL-based navigation. The algorithm has been tested on an AUV guided along a 600 m path within an abandoned marina underwater environment with satisfactory results

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper surveys control architectures proposed in the literature and describes a control architecture that is being developed for a semi-autonomous underwater vehicle for intervention missions (SAUVIM) at the University of Hawaii. Conceived as hybrid, this architecture has been organized in three layers: planning, control and execution. The mission is planned with a sequence of subgoals. Each subgoal has a related task supervisor responsible for arranging a set of pre-programmed task modules in order to achieve the subgoal. Task modules are the key concept of the architecture. They are the main building blocks and can be dynamically re-arranged by the task supervisor. In our architecture, deliberation takes place at the planning layer while reaction is dealt through the parallel execution of the task modules. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment