2 resultados para ASSIGNMENT

em Universitat de Girona, Spain


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel test of spatial independence of the distribution of crystals or phases in rocks based on compositional statistics is introduced. It improves and generalizes the common joins-count statistics known from map analysis in geographic information systems. Assigning phases independently to objects in RD is modelled by a single-trial multinomial random function Z(x), where the probabilities of phases add to one and are explicitly modelled as compositions in the K-part simplex SK. Thus, apparent inconsistencies of the tests based on the conventional joins{count statistics and their possibly contradictory interpretations are avoided. In practical applications we assume that the probabilities of phases do not depend on the location but are identical everywhere in the domain of de nition. Thus, the model involves the sum of r independent identical multinomial distributed 1-trial random variables which is an r-trial multinomial distributed random variable. The probabilities of the distribution of the r counts can be considered as a composition in the Q-part simplex SQ. They span the so called Hardy-Weinberg manifold H that is proved to be a K-1-affine subspace of SQ. This is a generalisation of the well-known Hardy-Weinberg law of genetics. If the assignment of phases accounts for some kind of spatial dependence, then the r-trial probabilities do not remain on H. This suggests the use of the Aitchison distance between observed probabilities to H to test dependence. Moreover, when there is a spatial uctuation of the multinomial probabilities, the observed r-trial probabilities move on H. This shift can be used as to check for these uctuations. A practical procedure and an algorithm to perform the test have been developed. Some cases applied to simulated and real data are presented. Key words: Spatial distribution of crystals in rocks, spatial distribution of phases, joins-count statistics, multinomial distribution, Hardy-Weinberg law, Hardy-Weinberg manifold, Aitchison geometry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, a new technique for grooming low-speed traffic demands into high-speed optical routes is proposed. This enhancement allows a transparent wavelength-routing switch (WRS) to aggregate traffic en route over existing optical routes without incurring expensive optical-electrical-optical (OEO) conversions. This implies that: a) an optical route may be considered as having more than one ingress node (all inline) and, b) traffic demands can partially use optical routes to reach their destination. The proposed optical routes are named "lighttours" since the traffic originating from different sources can be forwarded together in a single optical route, i.e., as taking a "tour" over different sources towards the same destination. The possibility of creating lighttours is the consequence of a novel WRS architecture proposed in this article, named "enhanced grooming" (G+). The ability to groom more traffic in the middle of a lighttour is achieved with the support of a simple optical device named lambda-monitor (previously introduced in the RingO project). In this article, we present the new WRS architecture and its advantages. To compare the advantages of lighttours with respect to classical lightpaths, an integer linear programming (ILP) model is proposed for the well-known multilayer problem: traffic grooming, routing and wavelength assignment The ILP model may be used for several objectives. However, this article focuses on two objectives: maximizing the network throughput, and minimizing the number of optical-electro-optical conversions used. Experiments show that G+ can route all the traffic using only half of the total OEO conversions needed by classical grooming. An heuristic is also proposed, aiming at achieving near optimal results in polynomial time