3 resultados para 443 private rule-making is
em Universitat de Girona, Spain
Resumo:
At CoDaWork'03 we presented work on the analysis of archaeological glass composi- tional data. Such data typically consist of geochemical compositions involving 10-12 variables and approximates completely compositional data if the main component, sil- ica, is included. We suggested that what has been termed `crude' principal component analysis (PCA) of standardized data often identi ed interpretable pattern in the data more readily than analyses based on log-ratio transformed data (LRA). The funda- mental problem is that, in LRA, minor oxides with high relative variation, that may not be structure carrying, can dominate an analysis and obscure pattern associated with variables present at higher absolute levels. We investigate this further using sub- compositional data relating to archaeological glasses found on Israeli sites. A simple model for glass-making is that it is based on a `recipe' consisting of two `ingredients', sand and a source of soda. Our analysis focuses on the sub-composition of components associated with the sand source. A `crude' PCA of standardized data shows two clear compositional groups that can be interpreted in terms of di erent recipes being used at di erent periods, re ected in absolute di erences in the composition. LRA analysis can be undertaken either by normalizing the data or de ning a `residual'. In either case, after some `tuning', these groups are recovered. The results from the normalized LRA are di erently interpreted as showing that the source of sand used to make the glass di ered. These results are complementary. One relates to the recipe used. The other relates to the composition (and presumed sources) of one of the ingredients. It seems to be axiomatic in some expositions of LRA that statistical analysis of compositional data should focus on relative variation via the use of ratios. Our analysis suggests that absolute di erences can also be informative
Resumo:
La incorporación Software Libre para Geomática (FOSS4G), para la explotación de Información Geoespacial en Sistemas de Información (SI) empresariales es una tendencia inexorable. Aunque estas tecnologías se están difundiendo con rapidez en entornos de empresas especializadas, Universidades, Administraciones Públicas y Centros Tecnológicos, todavía es algo incipiente en grandes empresas, especialmente en aquellas no directamente relacionadas con las tecnologías de los SIG. El objetivo de esta presentación será mostrar cómo se está consiguiendo introducir el software de SIG libre en el mundo empresarial, con tres casos de éxito. El primero es un desarrollo tradicional para una compañía tipo ‘utility’ donde el cliente define una funcionalidad y contrata su desarrollo. El segundo es un modelo de contratación de servicios. La tercera es una aplicación para la administración pública. En los tres casos, el uso de software libre ha permitido ofrecer soluciones exitosas para los requerimientos de los clientes (tanto funcionales como de rendimiento), y óptimas en coste
Resumo:
La tesis propone un marco de trabajo para el soporte de la toma de decisiones adecuado para soportar la ejecución distribuida de acciones cooperativas en entornos multi-agente dinámicos y complejos. Soporte para la toma de decisiones es un proceso que intenta mejorar la ejecución de la toma de decisiones en escenarios cooperativos. Este proceso ocurre continuamente en la vida diaria. Los humanos, por ejemplo, deben tomar decisiones acerca de que ropa usar, que comida comer, etc. En este sentido, un agente es definido como cualquier cosa que está situada en un entorno y que actúa, basado en su observación, su interpretación y su conocimiento acerca de su situación en tal entorno para lograr una acción en particular.Por lo tanto, para tomar decisiones, los agentes deben considerar el conocimiento que les permita ser consientes en que acciones pueden o no ejecutar. Aquí, tal proceso toma en cuenta tres parámetros de información con la intención de personificar a un agente en un entorno típicamente físico. Así, el mencionado conjunto de información es conocido como ejes de decisión, los cuales deben ser tomados por los agentes para decidir si pueden ejecutar correctamente una tarea propuesta por otro agente o humano. Los agentes, por lo tanto, pueden hacer mejores decisiones considerando y representando apropiadamente tal información. Los ejes de decisión, principalmente basados en: las condiciones ambientales, el conocimiento físico y el valor de confianza del agente, provee a los sistemas multi-agente un confiable razonamiento para alcanzar un factible y exitoso rendimiento cooperativo.Actualmente, muchos investigadores tienden a generar nuevos avances en la tecnología agente para incrementar la inteligencia, autonomía, comunicación y auto-adaptación en escenarios agentes típicamente abierto y distribuidos. En este sentido, esta investigación intenta contribuir en el desarrollo de un nuevo método que impacte tanto en las decisiones individuales como colectivas de los sistemas multi-agente. Por lo tanto, el marco de trabajo propuesto ha sido utilizado para implementar las acciones concretas involucradas en el campo de pruebas del fútbol robótico. Este campo emula los juegos de fútbol real, donde los agentes deben coordinarse, interactuar y cooperar entre ellos para solucionar tareas complejas dentro de un escenario dinámicamente cambiante y competitivo, tanto para manejar el diseño de los requerimientos involucrados en las tareas como para demostrar su efectividad en trabajos colectivos. Es así que los resultados obtenidos tanto en el simulador como en el campo real de experimentación, muestran que el marco de trabajo para el soporte de decisiones propuesto para agentes situados es capaz de mejorar la interacción y la comunicación, reflejando en un adecuad y confiable trabajo en equipo dentro de entornos impredecibles, dinámicos y competitivos. Además, los experimentos y resultados también muestran que la información seleccionada para generar los ejes de decisión para situar a los agentes, es útil cuando tales agentes deben ejecutar una acción o hacer un compromiso en cada momento con la intención de cumplir exitosamente un objetivo colectivo. Finalmente, algunas conclusiones enfatizando las ventajas y utilidades del trabajo propuesto en la mejora del rendimiento colectivo de los sistemas multi-agente en situaciones tales como tareas coordinadas y asignación de tareas son presentadas.