3 resultados para 112 Statistics and probability

em Universitat de Girona, Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given an observed test statistic and its degrees of freedom, one may compute the observed P value with most statistical packages. It is unknown to what extent test statistics and P values are congruent in published medical papers. Methods: We checked the congruence of statistical results reported in all the papers of volumes 409–412 of Nature (2001) and a random sample of 63 results from volumes 322–323 of BMJ (2001). We also tested whether the frequencies of the last digit of a sample of 610 test statistics deviated from a uniform distribution (i.e., equally probable digits).Results: 11.6% (21 of 181) and 11.1% (7 of 63) of the statistical results published in Nature and BMJ respectively during 2001 were incongruent, probably mostly due to rounding, transcription, or type-setting errors. At least one such error appeared in 38% and 25% of the papers of Nature and BMJ, respectively. In 12% of the cases, the significance level might change one or more orders of magnitude. The frequencies of the last digit of statistics deviated from the uniform distribution and suggested digit preference in rounding and reporting.Conclusions: this incongruence of test statistics and P values is another example that statistical practice is generally poor, even in the most renowned scientific journals, and that quality of papers should be more controlled and valued

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The statistical analysis of compositional data should be treated using logratios of parts, which are difficult to use correctly in standard statistical packages. For this reason a freeware package, named CoDaPack was created. This software implements most of the basic statistical methods suitable for compositional data. In this paper we describe the new version of the package that now is called CoDaPack3D. It is developed in Visual Basic for applications (associated with Excel©), Visual Basic and Open GL, and it is oriented towards users with a minimum knowledge of computers with the aim at being simple and easy to use. This new version includes new graphical output in 2D and 3D. These outputs could be zoomed and, in 3D, rotated. Also a customization menu is included and outputs could be saved in jpeg format. Also this new version includes an interactive help and all dialog windows have been improved in order to facilitate its use. To use CoDaPack one has to access Excel© and introduce the data in a standard spreadsheet. These should be organized as a matrix where Excel© rows correspond to the observations and columns to the parts. The user executes macros that return numerical or graphical results. There are two kinds of numerical results: new variables and descriptive statistics, and both appear on the same sheet. Graphical output appears in independent windows. In the present version there are 8 menus, with a total of 38 submenus which, after some dialogue, directly call the corresponding macro. The dialogues ask the user to input variables and further parameters needed, as well as where to put these results. The web site http://ima.udg.es/CoDaPack contains this freeware package and only Microsoft Excel© under Microsoft Windows© is required to run the software. Kew words: Compositional data Analysis, Software

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel test of spatial independence of the distribution of crystals or phases in rocks based on compositional statistics is introduced. It improves and generalizes the common joins-count statistics known from map analysis in geographic information systems. Assigning phases independently to objects in RD is modelled by a single-trial multinomial random function Z(x), where the probabilities of phases add to one and are explicitly modelled as compositions in the K-part simplex SK. Thus, apparent inconsistencies of the tests based on the conventional joins{count statistics and their possibly contradictory interpretations are avoided. In practical applications we assume that the probabilities of phases do not depend on the location but are identical everywhere in the domain of de nition. Thus, the model involves the sum of r independent identical multinomial distributed 1-trial random variables which is an r-trial multinomial distributed random variable. The probabilities of the distribution of the r counts can be considered as a composition in the Q-part simplex SQ. They span the so called Hardy-Weinberg manifold H that is proved to be a K-1-affine subspace of SQ. This is a generalisation of the well-known Hardy-Weinberg law of genetics. If the assignment of phases accounts for some kind of spatial dependence, then the r-trial probabilities do not remain on H. This suggests the use of the Aitchison distance between observed probabilities to H to test dependence. Moreover, when there is a spatial uctuation of the multinomial probabilities, the observed r-trial probabilities move on H. This shift can be used as to check for these uctuations. A practical procedure and an algorithm to perform the test have been developed. Some cases applied to simulated and real data are presented. Key words: Spatial distribution of crystals in rocks, spatial distribution of phases, joins-count statistics, multinomial distribution, Hardy-Weinberg law, Hardy-Weinberg manifold, Aitchison geometry