4 resultados para 020200 ATOMIC MOLECULAR NUCLEAR PARTICLE AND PLASMA PHYSICS

em Universitat de Girona, Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pseudomonas fluorescens EPS62e es va seleccionar com a agent de biocontrol del foc bacterià per la seva eficàcia en el control de Erwinia amylovora. En aquest treball es van desenvolupar mètodes de traçabilitat que van permetre la seva detecció específica i quantificació. Mitjançant les tècniques RAPD i U-PCR es van obtenir fragments d'amplificació diferencial per EPS62e que es van seqüenciar i caracteritzar com marcadors SCAR per dissenyar una PCR en temps real. La PCR a temps real es va utilitzar simultàniament amb mètodes microbiològics per estudiar l'adaptabilitat epifítica de EPS62e en pomera i perera. L'ús combinat de mètodes microbiològics i moleculars va permetre la identificació de tres estats fisiològics de EPS62e: la colonització activa, l'entrada en un estat de viable però no cultivable, i la mort cel·lular. Aquest treball mostra que EPS62e està ben adaptada a la colonització de flors a camp, encoratjant la seva utilització dins d'una estratègia de control biològic contra el foc bacterià.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the static field limit, the vibrational hyperpolarizability consists of two contributions due to: (1) the shift in the equilibrium geometry (known as nuclear relaxation), and (2) the change in the shape of the potential energy surface (known as curvature). Simple finite field methods have previously been developed for evaluating these static field contributions and also for determining the effect of nuclear relaxation on dynamic vibrational hyperpolarizabilities in the infinite frequency approximation. In this paper the finite field approach is extended to include, within the infinite frequency approximation, the effect of curvature on the major dynamic nonlinear optical processes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the basis set size and the correlation energy in the static electrical properties of the CO molecule is assessed. In particular, we have studied both the nuclear relaxation and the vibrational contributions to the static molecular electrical properties, the vibrational Stark effect (VSE) and the vibrational intensity effect (VIE). From a mathematical point of view, when a static and uniform electric field is applied to a molecule, the energy of this system can be expressed in terms of a double power series with respect to the bond length and to the field strength. From the power series expansion of the potential energy, field-dependent expressions for the equilibrium geometry, for the potential energy and for the force constant are obtained. The nuclear relaxation and vibrational contributions to the molecular electrical properties are analyzed in terms of the derivatives of the electronic molecular properties. In general, the results presented show that accurate inclusion of the correlation energy and large basis sets are needed to calculate the molecular electrical properties and their derivatives with respect to either nuclear displacements or/and field strength. With respect to experimental data, the calculated power series coefficients are overestimated by the SCF, CISD, and QCISD methods. On the contrary, perturbation methods (MP2 and MP4) tend to underestimate them. In average and using the 6-311 + G(3df) basis set and for the CO molecule, the nuclear relaxation and the vibrational contributions to the molecular electrical properties amount to 11.7%, 3.3%, and 69.7% of the purely electronic μ, α, and β values, respectively

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A conceptually new approach is introduced for the decomposition of the molecular energy calculated at the density functional theory level of theory into sum of one- and two-atomic energy components, and is realized in the "fuzzy atoms" framework. (Fuzzy atoms mean that the three-dimensional physical space is divided into atomic regions having no sharp boundaries but exhibiting a continuous transition from one to another.) The new scheme uses the new concept of "bond order density" to calculate the diatomic exchange energy components and gives them unexpectedly close to the values calculated by the exact (Hartree-Fock) exchange for the same Kohn-Sham orbitals