36 resultados para 3D Mapping
Resumo:
Large scale image mosaicing methods are in great demand among scientists who study different aspects of the seabed, and have been fostered by impressive advances in the capabilities of underwater robots in gathering optical data from the seafloor. Cost and weight constraints mean that lowcost Remotely operated vehicles (ROVs) usually have a very limited number of sensors. When a low-cost robot carries out a seafloor survey using a down-looking camera, it usually follows a predetermined trajectory that provides several non time-consecutive overlapping image pairs. Finding these pairs (a process known as topology estimation) is indispensable to obtaining globally consistent mosaics and accurate trajectory estimates, which are necessary for a global view of the surveyed area, especially when optical sensors are the only data source. This thesis presents a set of consistent methods aimed at creating large area image mosaics from optical data obtained during surveys with low-cost underwater vehicles. First, a global alignment method developed within a Feature-based image mosaicing (FIM) framework, where nonlinear minimisation is substituted by two linear steps, is discussed. Then, a simple four-point mosaic rectifying method is proposed to reduce distortions that might occur due to lens distortions, error accumulation and the difficulties of optical imaging in an underwater medium. The topology estimation problem is addressed by means of an augmented state and extended Kalman filter combined framework, aimed at minimising the total number of matching attempts and simultaneously obtaining the best possible trajectory. Potential image pairs are predicted by taking into account the uncertainty in the trajectory. The contribution of matching an image pair is investigated using information theory principles. Lastly, a different solution to the topology estimation problem is proposed in a bundle adjustment framework. Innovative aspects include the use of fast image similarity criterion combined with a Minimum spanning tree (MST) solution, to obtain a tentative topology. This topology is improved by attempting image matching with the pairs for which there is the most overlap evidence. Unlike previous approaches for large-area mosaicing, our framework is able to deal naturally with cases where time-consecutive images cannot be matched successfully, such as completely unordered sets. Finally, the efficiency of the proposed methods is discussed and a comparison made with other state-of-the-art approaches, using a series of challenging datasets in underwater scenarios
Resumo:
Los sistemas productivos de las empresas han de adaptarse a las exigencias de los mercados. El Value Stream Mapping (VSM) es una técnica desarrollada por la Producción Ajustada y orientada al rediseño de dichos sistemas productivos. Si bien existe divulgación teórica sobre la técnica así como publicaciones de casos prácticos exitosos, se detecta la carencia de un análisis que explore en profundidad la aplicabilidad de la técnica en entornos productivos relacionados con las lineas de flujo desconectadas. Así, el objetivo de la tesis es la evaluación de la aplicabilidad del VSM en dichos entornos. El método de investigación adoptado ha consistido en un estudio de casos múltiple sobre seis empresas. Los resultados confirman la validez práctica del VSM para el rediseño de sistemas productivos. No obstante, también se fijan aspectos de mejora y desarrollo para que la técnica pueda convertirse en la referencia base.
Resumo:
This thesis proposes a solution to the problem of estimating the motion of an Unmanned Underwater Vehicle (UUV). Our approach is based on the integration of the incremental measurements which are provided by a vision system. When the vehicle is close to the underwater terrain, it constructs a visual map (so called "mosaic") of the area where the mission takes place while, at the same time, it localizes itself on this map, following the Concurrent Mapping and Localization strategy. The proposed methodology to achieve this goal is based on a feature-based mosaicking algorithm. A down-looking camera is attached to the underwater vehicle. As the vehicle moves, a sequence of images of the sea-floor is acquired by the camera. For every image of the sequence, a set of characteristic features is detected by means of a corner detector. Then, their correspondences are found in the next image of the sequence. Solving the correspondence problem in an accurate and reliable way is a difficult task in computer vision. We consider different alternatives to solve this problem by introducing a detailed analysis of the textural characteristics of the image. This is done in two phases: first comparing different texture operators individually, and next selecting those that best characterize the point/matching pair and using them together to obtain a more robust characterization. Various alternatives are also studied to merge the information provided by the individual texture operators. Finally, the best approach in terms of robustness and efficiency is proposed. After the correspondences have been solved, for every pair of consecutive images we obtain a list of image features in the first image and their matchings in the next frame. Our aim is now to recover the apparent motion of the camera from these features. Although an accurate texture analysis is devoted to the matching pro-cedure, some false matches (known as outliers) could still appear among the right correspon-dences. For this reason, a robust estimation technique is used to estimate the planar transformation (homography) which explains the dominant motion of the image. Next, this homography is used to warp the processed image to the common mosaic frame, constructing a composite image formed by every frame of the sequence. With the aim of estimating the position of the vehicle as the mosaic is being constructed, the 3D motion of the vehicle can be computed from the measurements obtained by a sonar altimeter and the incremental motion computed from the homography. Unfortunately, as the mosaic increases in size, image local alignment errors increase the inaccuracies associated to the position of the vehicle. Occasionally, the trajectory described by the vehicle may cross over itself. In this situation new information is available, and the system can readjust the position estimates. Our proposal consists not only in localizing the vehicle, but also in readjusting the trajectory described by the vehicle when crossover information is obtained. This is achieved by implementing an Augmented State Kalman Filter (ASKF). Kalman filtering appears as an adequate framework to deal with position estimates and their associated covariances. Finally, some experimental results are shown. A laboratory setup has been used to analyze and evaluate the accuracy of the mosaicking system. This setup enables a quantitative measurement of the accumulated errors of the mosaics created in the lab. Then, the results obtained from real sea trials using the URIS underwater vehicle are shown.
Resumo:
L'objectiu d'aquesta tesi és l'estudi de les diferents tècniques per alinear vistes tridimensionals. Aquest estudi ens ha permès detectar els principals problemes de les tècniques existents, aprotant una solució novedosa i contribuint resolent algunes de les mancances detectades especialment en l'alineament de vistes a temps real. Per tal d'adquirir les esmentades vistes, s'ha dissenyat un sensor 3D manual que ens permet fer adquisicions tridimensionals amb total llibertat de moviments. Així mateix, s'han estudiat les tècniques de minimització global per tal de reduir els efectes de la propagació de l'error.
Resumo:
La miniaturització de la industria microelectrònica és un fet del tot inqüestionables i la tecnologia CMOS no n'és una excepció. En conseqüència la comunitat científica s'ha plantejat dos grans reptes: En primer lloc portar la tecnologia CMOS el més lluny possible ('Beyond CMOS') tot desenvolupant sistemes d'altes prestacions com microprocessadors, micro - nanosistemes o bé sistemes de píxels. I en segon lloc encetar una nova generació electrònica basada en tecnologies totalment diferents dins l'àmbit de les Nanotecnologies. Tots aquests avanços exigeixen una recerca i innovació constant en la resta d'àrees complementaries com són les d'encapsulat. L'encapsulat ha de satisfer bàsicament tres funcions: Interfície elèctrica del sistema amb l'exterior, Proporcionar un suport mecànic al sistema i Proporcionar un camí de dissipació de calor. Per tant, si tenim en compte que la majoria d'aquests dispositius d'altes prestacions demanden un alt nombre d'entrades i sortides, els mòduls multixip (MCMs) i la tecnologia flip chip es presenten com una solució molt interessant per aquests tipus de dispositiu. L'objectiu d'aquesta tesi és la de desenvolupar una tecnologia de mòduls multixip basada en interconnexions flip chip per a la integració de detectors de píxels híbrids, que inclou: 1) El desenvolupament d'una tecnologia de bumping basada en bumps de soldadura Sn/Ag eutèctics dipositats per electrodeposició amb un pitch de 50µm, i 2) El desenvolupament d'una tecnologia de vies d'or en silici que permet interconnectar i apilar xips verticalment (3D packaging) amb un pitch de 100µm. Finalment aquesta alta capacitat d'interconnexió dels encapsulats flip chip ha permès que sistemes de píxels tradicionalment monolítics puguin evolucionar cap a sistemes híbrids més compactes i complexes, i que en aquesta tesi s'ha vist reflectit transferint la tecnologia desenvolupada al camp de la física d'altes energies, en concret implantant el sistema de bump bonding d'un mamògraf digital. Addicionalment s'ha implantat també un dispositiu detector híbrid modular per a la reconstrucció d'imatges 3D en temps real, que ha donat lloc a una patent.