26 resultados para Vidal, Françoise Fénelon.
Resumo:
Starting with logratio biplots for compositional data, which are based on the principle of subcompositional coherence, and then adding weights, as in correspondence analysis, we rediscover Lewi's spectral map and many connections to analyses of two-way tables of non-negative data. Thanks to the weighting, the method also achieves the property of distributional equivalence
Resumo:
The algebraic-geometric structure of the simplex, known as Aitchison geometry, is used to look at the Dirichlet family of distributions from a new perspective. A classical Dirichlet density function is expressed with respect to the Lebesgue measure on real space. We propose here to change this measure by the Aitchison measure on the simplex, and study some properties and characteristic measures of the resulting density
Resumo:
All of the imputation techniques usually applied for replacing values below the detection limit in compositional data sets have adverse effects on the variability. In this work we propose a modification of the EM algorithm that is applied using the additive log-ratio transformation. This new strategy is applied to a compositional data set and the results are compared with the usual imputation techniques
Resumo:
In the eighties, John Aitchison (1986) developed a new methodological approach for the statistical analysis of compositional data. This new methodology was implemented in Basic routines grouped under the name CODA and later NEWCODA inMatlab (Aitchison, 1997). After that, several other authors have published extensions to this methodology: Marín-Fernández and others (2000), Barceló-Vidal and others (2001), Pawlowsky-Glahn and Egozcue (2001, 2002) and Egozcue and others (2003). (...)
Resumo:
Compositional data naturally arises from the scientific analysis of the chemical composition of archaeological material such as ceramic and glass artefacts. Data of this type can be explored using a variety of techniques, from standard multivariate methods such as principal components analysis and cluster analysis, to methods based upon the use of log-ratios. The general aim is to identify groups of chemically similar artefacts that could potentially be used to answer questions of provenance. This paper will demonstrate work in progress on the development of a documented library of methods, implemented using the statistical package R, for the analysis of compositional data. R is an open source package that makes available very powerful statistical facilities at no cost. We aim to show how, with the aid of statistical software such as R, traditional exploratory multivariate analysis can easily be used alongside, or in combination with, specialist techniques of compositional data analysis. The library has been developed from a core of basic R functionality, together with purpose-written routines arising from our own research (for example that reported at CoDaWork'03). In addition, we have included other appropriate publicly available techniques and libraries that have been implemented in R by other authors. Available functions range from standard multivariate techniques through to various approaches to log-ratio analysis and zero replacement. We also discuss and demonstrate a small selection of relatively new techniques that have hitherto been little-used in archaeometric applications involving compositional data. The application of the library to the analysis of data arising in archaeometry will be demonstrated; results from different analyses will be compared; and the utility of the various methods discussed
Resumo:
”compositions” is a new R-package for the analysis of compositional and positive data. It contains four classes corresponding to the four different types of compositional and positive geometry (including the Aitchison geometry). It provides means for computation, plotting and high-level multivariate statistical analysis in all four geometries. These geometries are treated in an fully analogous way, based on the principle of working in coordinates, and the object-oriented programming paradigm of R. In this way, called functions automatically select the most appropriate type of analysis as a function of the geometry. The graphical capabilities include ternary diagrams and tetrahedrons, various compositional plots (boxplots, barplots, piecharts) and extensive graphical tools for principal components. Afterwards, ortion and proportion lines, straight lines and ellipses in all geometries can be added to plots. The package is accompanied by a hands-on-introduction, documentation for every function, demos of the graphical capabilities and plenty of usage examples. It allows direct and parallel computation in all four vector spaces and provides the beginner with a copy-and-paste style of data analysis, while letting advanced users keep the functionality and customizability they demand of R, as well as all necessary tools to add own analysis routines. A complete example is included in the appendix
Resumo:
Hungary lies entirely within the Carpatho-Pannonian Region (CPR), a dominant tectonic unit of eastern Central Europe. The CPR consists of the Pannonian Basin system, and the arc of the Carpathian Mountains surrounding the lowlands in the north, east, and southeast. In the west, the CPR is bounded by the Eastern Alps, whereas in the south, by the Dinaridic belt. (...)
Resumo:
R from http://www.r-project.org/ is ‘GNU S’ – a language and environment for statistical computing and graphics. The environment in which many classical and modern statistical techniques have been implemented, but many are supplied as packages. There are 8 standard packages and many more are available through the cran family of Internet sites http://cran.r-project.org . We started to develop a library of functions in R to support the analysis of mixtures and our goal is a MixeR package for compositional data analysis that provides support for operations on compositions: perturbation and power multiplication, subcomposition with or without residuals, centering of the data, computing Aitchison’s, Euclidean, Bhattacharyya distances, compositional Kullback-Leibler divergence etc. graphical presentation of compositions in ternary diagrams and tetrahedrons with additional features: barycenter, geometric mean of the data set, the percentiles lines, marking and coloring of subsets of the data set, theirs geometric means, notation of individual data in the set . . . dealing with zeros and missing values in compositional data sets with R procedures for simple and multiplicative replacement strategy, the time series analysis of compositional data. We’ll present the current status of MixeR development and illustrate its use on selected data sets
Resumo:
The statistical analysis of compositional data is commonly used in geological studies. As is well-known, compositions should be treated using logratios of parts, which are difficult to use correctly in standard statistical packages. In this paper we describe the new features of our freeware package, named CoDaPack, which implements most of the basic statistical methods suitable for compositional data. An example using real data is presented to illustrate the use of the package
Resumo:
Aitchison and Bacon-Shone (1999) considered convex linear combinations of compositions. In other words, they investigated compositions of compositions, where the mixing composition follows a logistic Normal distribution (or a perturbation process) and the compositions being mixed follow a logistic Normal distribution. In this paper, I investigate the extension to situations where the mixing composition varies with a number of dimensions. Examples would be where the mixing proportions vary with time or distance or a combination of the two. Practical situations include a river where the mixing proportions vary along the river, or across a lake and possibly with a time trend. This is illustrated with a dataset similar to that used in the Aitchison and Bacon-Shone paper, which looked at how pollution in a loch depended on the pollution in the three rivers that feed the loch. Here, I explicitly model the variation in the linear combination across the loch, assuming that the mean of the logistic Normal distribution depends on the river flows and relative distance from the source origins
Resumo:
The literature related to skew–normal distributions has grown rapidly in recent years but at the moment few applications concern the description of natural phenomena with this type of probability models, as well as the interpretation of their parameters. The skew–normal distributions family represents an extension of the normal family to which a parameter (λ) has been added to regulate the skewness. The development of this theoretical field has followed the general tendency in Statistics towards more flexible methods to represent features of the data, as adequately as possible, and to reduce unrealistic assumptions as the normality that underlies most methods of univariate and multivariate analysis. In this paper an investigation on the shape of the frequency distribution of the logratio ln(Cl−/Na+) whose components are related to waters composition for 26 wells, has been performed. Samples have been collected around the active center of Vulcano island (Aeolian archipelago, southern Italy) from 1977 up to now at time intervals of about six months. Data of the logratio have been tentatively modeled by evaluating the performance of the skew–normal model for each well. Values of the λ parameter have been compared by considering temperature and spatial position of the sampling points. Preliminary results indicate that changes in λ values can be related to the nature of environmental processes affecting the data