122 resultados para Cátedra Extraordinaria
Resumo:
The use of orthonormal coordinates in the simplex and, particularly, balance coordinates, has suggested the use of a dendrogram for the exploratory analysis of compositional data. The dendrogram is based on a sequential binary partition of a compositional vector into groups of parts. At each step of a partition, one group of parts is divided into two new groups, and a balancing axis in the simplex between both groups is defined. The set of balancing axes constitutes an orthonormal basis, and the projections of the sample on them are orthogonal coordinates. They can be represented in a dendrogram-like graph showing: (a) the way of grouping parts of the compositional vector; (b) the explanatory role of each subcomposition generated in the partition process; (c) the decomposition of the total variance into balance components associated with each binary partition; (d) a box-plot of each balance. This representation is useful to help the interpretation of balance coordinates; to identify which are the most explanatory coordinates; and to describe the whole sample in a single diagram independently of the number of parts of the sample
Resumo:
The application of compositional data analysis through log ratio trans- formations corresponds to a multinomial logit model for the shares themselves. This model is characterized by the property of Independence of Irrelevant Alter- natives (IIA). IIA states that the odds ratio in this case the ratio of shares is invariant to the addition or deletion of outcomes to the problem. It is exactly this invariance of the ratio that underlies the commonly used zero replacement procedure in compositional data analysis. In this paper we investigate using the nested logit model that does not embody IIA and an associated zero replacement procedure and compare its performance with that of the more usual approach of using the multinomial logit model. Our comparisons exploit a data set that com- bines voting data by electoral division with corresponding census data for each division for the 2001 Federal election in Australia
Resumo:
Starting with logratio biplots for compositional data, which are based on the principle of subcompositional coherence, and then adding weights, as in correspondence analysis, we rediscover Lewi's spectral map and many connections to analyses of two-way tables of non-negative data. Thanks to the weighting, the method also achieves the property of distributional equivalence
Resumo:
The algebraic-geometric structure of the simplex, known as Aitchison geometry, is used to look at the Dirichlet family of distributions from a new perspective. A classical Dirichlet density function is expressed with respect to the Lebesgue measure on real space. We propose here to change this measure by the Aitchison measure on the simplex, and study some properties and characteristic measures of the resulting density
Resumo:
All of the imputation techniques usually applied for replacing values below the detection limit in compositional data sets have adverse effects on the variability. In this work we propose a modification of the EM algorithm that is applied using the additive log-ratio transformation. This new strategy is applied to a compositional data set and the results are compared with the usual imputation techniques
Resumo:
Compositional data naturally arises from the scientific analysis of the chemical composition of archaeological material such as ceramic and glass artefacts. Data of this type can be explored using a variety of techniques, from standard multivariate methods such as principal components analysis and cluster analysis, to methods based upon the use of log-ratios. The general aim is to identify groups of chemically similar artefacts that could potentially be used to answer questions of provenance. This paper will demonstrate work in progress on the development of a documented library of methods, implemented using the statistical package R, for the analysis of compositional data. R is an open source package that makes available very powerful statistical facilities at no cost. We aim to show how, with the aid of statistical software such as R, traditional exploratory multivariate analysis can easily be used alongside, or in combination with, specialist techniques of compositional data analysis. The library has been developed from a core of basic R functionality, together with purpose-written routines arising from our own research (for example that reported at CoDaWork'03). In addition, we have included other appropriate publicly available techniques and libraries that have been implemented in R by other authors. Available functions range from standard multivariate techniques through to various approaches to log-ratio analysis and zero replacement. We also discuss and demonstrate a small selection of relatively new techniques that have hitherto been little-used in archaeometric applications involving compositional data. The application of the library to the analysis of data arising in archaeometry will be demonstrated; results from different analyses will be compared; and the utility of the various methods discussed
Resumo:
”compositions” is a new R-package for the analysis of compositional and positive data. It contains four classes corresponding to the four different types of compositional and positive geometry (including the Aitchison geometry). It provides means for computation, plotting and high-level multivariate statistical analysis in all four geometries. These geometries are treated in an fully analogous way, based on the principle of working in coordinates, and the object-oriented programming paradigm of R. In this way, called functions automatically select the most appropriate type of analysis as a function of the geometry. The graphical capabilities include ternary diagrams and tetrahedrons, various compositional plots (boxplots, barplots, piecharts) and extensive graphical tools for principal components. Afterwards, ortion and proportion lines, straight lines and ellipses in all geometries can be added to plots. The package is accompanied by a hands-on-introduction, documentation for every function, demos of the graphical capabilities and plenty of usage examples. It allows direct and parallel computation in all four vector spaces and provides the beginner with a copy-and-paste style of data analysis, while letting advanced users keep the functionality and customizability they demand of R, as well as all necessary tools to add own analysis routines. A complete example is included in the appendix
Resumo:
R from http://www.r-project.org/ is ‘GNU S’ – a language and environment for statistical computing and graphics. The environment in which many classical and modern statistical techniques have been implemented, but many are supplied as packages. There are 8 standard packages and many more are available through the cran family of Internet sites http://cran.r-project.org . We started to develop a library of functions in R to support the analysis of mixtures and our goal is a MixeR package for compositional data analysis that provides support for operations on compositions: perturbation and power multiplication, subcomposition with or without residuals, centering of the data, computing Aitchison’s, Euclidean, Bhattacharyya distances, compositional Kullback-Leibler divergence etc. graphical presentation of compositions in ternary diagrams and tetrahedrons with additional features: barycenter, geometric mean of the data set, the percentiles lines, marking and coloring of subsets of the data set, theirs geometric means, notation of individual data in the set . . . dealing with zeros and missing values in compositional data sets with R procedures for simple and multiplicative replacement strategy, the time series analysis of compositional data. We’ll present the current status of MixeR development and illustrate its use on selected data sets
Resumo:
The statistical analysis of compositional data is commonly used in geological studies. As is well-known, compositions should be treated using logratios of parts, which are difficult to use correctly in standard statistical packages. In this paper we describe the new features of our freeware package, named CoDaPack, which implements most of the basic statistical methods suitable for compositional data. An example using real data is presented to illustrate the use of the package
Resumo:
Aitchison and Bacon-Shone (1999) considered convex linear combinations of compositions. In other words, they investigated compositions of compositions, where the mixing composition follows a logistic Normal distribution (or a perturbation process) and the compositions being mixed follow a logistic Normal distribution. In this paper, I investigate the extension to situations where the mixing composition varies with a number of dimensions. Examples would be where the mixing proportions vary with time or distance or a combination of the two. Practical situations include a river where the mixing proportions vary along the river, or across a lake and possibly with a time trend. This is illustrated with a dataset similar to that used in the Aitchison and Bacon-Shone paper, which looked at how pollution in a loch depended on the pollution in the three rivers that feed the loch. Here, I explicitly model the variation in the linear combination across the loch, assuming that the mean of the logistic Normal distribution depends on the river flows and relative distance from the source origins
Resumo:
The literature related to skew–normal distributions has grown rapidly in recent years but at the moment few applications concern the description of natural phenomena with this type of probability models, as well as the interpretation of their parameters. The skew–normal distributions family represents an extension of the normal family to which a parameter (λ) has been added to regulate the skewness. The development of this theoretical field has followed the general tendency in Statistics towards more flexible methods to represent features of the data, as adequately as possible, and to reduce unrealistic assumptions as the normality that underlies most methods of univariate and multivariate analysis. In this paper an investigation on the shape of the frequency distribution of the logratio ln(Cl−/Na+) whose components are related to waters composition for 26 wells, has been performed. Samples have been collected around the active center of Vulcano island (Aeolian archipelago, southern Italy) from 1977 up to now at time intervals of about six months. Data of the logratio have been tentatively modeled by evaluating the performance of the skew–normal model for each well. Values of the λ parameter have been compared by considering temperature and spatial position of the sampling points. Preliminary results indicate that changes in λ values can be related to the nature of environmental processes affecting the data
Resumo:
There are two principal chemical concepts that are important for studying the natural environment. The first one is thermodynamics, which describes whether a system is at equilibrium or can spontaneously change by chemical reactions. The second main concept is how fast chemical reactions (kinetics or rate of chemical change) take place whenever they start. In this work we examine a natural system in which both thermodynamics and kinetic factors are important in determining the abundance of NH+4 , NO−2 and NO−3 in superficial waters. Samples were collected in the Arno Basin (Tuscany, Italy), a system in which natural and antrophic effects both contribute to highly modify the chemical composition of water. Thermodynamical modelling based on the reduction-oxidation reactions involving the passage NH+4 -> NO−2 -> NO−3 in equilibrium conditions has allowed to determine the Eh redox potential values able to characterise the state of each sample and, consequently, of the fluid environment from which it was drawn. Just as pH expresses the concentration of H+ in solution, redox potential is used to express the tendency of an environment to receive or supply electrons. In this context, oxic environments, as those of river systems, are said to have a high redox potential because O2 is available as an electron acceptor. Principles of thermodynamics and chemical kinetics allow to obtain a model that often does not completely describe the reality of natural systems. Chemical reactions may indeed fail to achieve equilibrium because the products escape from the site of the rection or because reactions involving the trasformation are very slow, so that non-equilibrium conditions exist for long periods. Moreover, reaction rates can be sensitive to poorly understood catalytic effects or to surface effects, while variables as concentration (a large number of chemical species can coexist and interact concurrently), temperature and pressure can have large gradients in natural systems. By taking into account this, data of 91 water samples have been modelled by using statistical methodologies for compositional data. The application of log–contrast analysis has allowed to obtain statistical parameters to be correlated with the calculated Eh values. In this way, natural conditions in which chemical equilibrium is hypothesised, as well as underlying fast reactions, are compared with those described by a stochastic approach
Resumo:
At CoDaWork'03 we presented work on the analysis of archaeological glass composi- tional data. Such data typically consist of geochemical compositions involving 10-12 variables and approximates completely compositional data if the main component, sil- ica, is included. We suggested that what has been termed `crude' principal component analysis (PCA) of standardized data often identi ed interpretable pattern in the data more readily than analyses based on log-ratio transformed data (LRA). The funda- mental problem is that, in LRA, minor oxides with high relative variation, that may not be structure carrying, can dominate an analysis and obscure pattern associated with variables present at higher absolute levels. We investigate this further using sub- compositional data relating to archaeological glasses found on Israeli sites. A simple model for glass-making is that it is based on a `recipe' consisting of two `ingredients', sand and a source of soda. Our analysis focuses on the sub-composition of components associated with the sand source. A `crude' PCA of standardized data shows two clear compositional groups that can be interpreted in terms of di erent recipes being used at di erent periods, re ected in absolute di erences in the composition. LRA analysis can be undertaken either by normalizing the data or de ning a `residual'. In either case, after some `tuning', these groups are recovered. The results from the normalized LRA are di erently interpreted as showing that the source of sand used to make the glass di ered. These results are complementary. One relates to the recipe used. The other relates to the composition (and presumed sources) of one of the ingredients. It seems to be axiomatic in some expositions of LRA that statistical analysis of compositional data should focus on relative variation via the use of ratios. Our analysis suggests that absolute di erences can also be informative
Resumo:
The classical statistical study of the wind speed in the atmospheric surface layer is made generally from the analysis of the three habitual components that perform the wind data, that is, the component W-E, the component S-N and the vertical component, considering these components independent. When the goal of the study of these data is the Aeolian energy, so is when wind is studied from an energetic point of view and the squares of wind components can be considered as compositional variables. To do so, each component has to be divided by the module of the corresponding vector. In this work the theoretical analysis of the components of the wind as compositional data is presented and also the conclusions that can be obtained from the point of view of the practical applications as well as those that can be derived from the application of this technique in different conditions of weather
Resumo:
A problem in the archaeometric classification of Catalan Renaissance pottery is the fact, that the clay supply of the pottery workshops was centrally organized by guilds, and therefore usually all potters of a single production centre produced chemically similar ceramics. However, analysing the glazes of the ware usually a large number of inclusions in the glaze is found, which reveal technological differences between single workshops. These inclusions have been used by the potters in order to opacify the transparent glaze and to achieve a white background for further decoration. In order to distinguish different technological preparation procedures of the single workshops, at a Scanning Electron Microscope the chemical composition of those inclusions as well as their size in the two-dimensional cut is recorded. Based on the latter, a frequency distribution of the apparent diameters is estimated for each sample and type of inclusion. Following an approach by S.D. Wicksell (1925), it is principally possible to transform the distributions of the apparent 2D-diameters back to those of the true three-dimensional bodies. The applicability of this approach and its practical problems are examined using different ways of kernel density estimation and Monte-Carlo tests of the methodology. Finally, it is tested in how far the obtained frequency distributions can be used to classify the pottery