199 resultados para STAMP
Resumo:
This paper deals with fault detection and isolation problems for nonlinear dynamic systems. Both problems are stated as constraint satisfaction problems (CSP) and solved using consistency techniques. The main contribution is the isolation method based on consistency techniques and uncertainty space refining of interval parameters. The major advantage of this method is that the isolation speed is fast even taking into account uncertainty in parameters, measurements, and model errors. Interval calculations bring independence from the assumption of monotony considered by several approaches for fault isolation which are based on observers. An application to a well known alcoholic fermentation process model is presented
Resumo:
Emotions are crucial for user's decision making in recommendation processes. We first introduce ambient recommender systems, which arise from the analysis of new trends on the exploitation of the emotional context in the next generation of recommender systems. We then explain some results of these new trends in real-world applications through the smart prediction assistant (SPA) platform in an intelligent learning guide with more than three million users. While most approaches to recommending have focused on algorithm performance. SPA makes recommendations to users on the basis of emotional information acquired in an incremental way. This article provides a cross-disciplinary perspective to achieve this goal in such recommender systems through a SPA platform. The methodology applied in SPA is the result of a bunch of technology transfer projects for large real-world rccommender systems
Resumo:
This paper focus on the problem of locating single-phase faults in mixed distribution electric systems, with overhead lines and underground cables, using voltage and current measurements at the sending-end and sequence model of the network. Since calculating series impedance for underground cables is not as simple as in the case of overhead lines, the paper proposes a methodology to obtain an estimation of zero-sequence impedance of underground cables starting from previous single-faults occurred in the system, in which an electric arc occurred at the fault location. For this reason, the signal is previously pretreated to eliminate its peaks voltage and the analysis can be done working with a signal as close as a sinus wave as possible
Resumo:
Fault location has been studied deeply for transmission lines due to its importance in power systems. Nowadays the problem of fault location on distribution systems is receiving special attention mainly because of the power quality regulations. In this context, this paper presents an application software developed in Matlabtrade that automatically calculates the location of a fault in a distribution power system, starting from voltages and currents measured at the line terminal and the model of the distribution power system data. The application is based on a N-ary tree structure, which is suitable to be used in this application due to the highly branched and the non- homogeneity nature of the distribution systems, and has been developed for single-phase, two-phase, two-phase-to-ground, and three-phase faults. The implemented application is tested by using fault data in a real electrical distribution power system
Resumo:
This paper describes a new reliable method, based on modal interval analysis (MIA) and set inversion (SI) techniques, for the characterization of solution sets defined by quantified constraints satisfaction problems (QCSP) over continuous domains. The presented methodology, called quantified set inversion (QSI), can be used over a wide range of engineering problems involving uncertain nonlinear models. Finally, an application on parameter identification is presented
Resumo:
The main objective of this paper aims at developing a methodology that takes into account the human factor extracted from the data base used by the recommender systems, and which allow to resolve the specific problems of prediction and recommendation. In this work, we propose to extract the user's human values scale from the data base of the users, to improve their suitability in open environments, such as the recommender systems. For this purpose, the methodology is applied with the data of the user after interacting with the system. The methodology is exemplified with a case study
Resumo:
The H∞ synchronization problem of the master and slave structure of a second-order neutral master-slave systems with time-varying delays is presented in this paper. Delay-dependent sufficient conditions for the design of a delayed output-feedback control are given by Lyapunov-Krasovskii method in terms of a linear matrix inequality (LMI). A controller, which guarantees H∞ synchronization of the master and slave structure using some free weighting matrices, is then developed. A numerical example has been given to show the effectiveness of the method
Resumo:
Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately
Resumo:
The work presented in this paper belongs to the power quality knowledge area and deals with the voltage sags in power transmission and distribution systems. Propagating throughout the power network, voltage sags can cause plenty of problems for domestic and industrial loads that can financially cost a lot. To impose penalties to responsible party and to improve monitoring and mitigation strategies, sags must be located in the power network. With such a worthwhile objective, this paper comes up with a new method for associating a sag waveform with its origin in transmission and distribution networks. It solves this problem through developing hybrid methods which hire multiway principal component analysis (MPCA) as a dimension reduction tool. MPCA reexpresses sag waveforms in a new subspace just in a few scores. We train some well-known classifiers with these scores and exploit them for classification of future sags. The capabilities of the proposed method for dimension reduction and classification are examined using the real data gathered from three substations in Catalonia, Spain. The obtained classification rates certify the goodness and powerfulness of the developed hybrid methods as brand-new tools for sag classification
Resumo:
The design of control, estimation or diagnosis algorithms most often assumes that all available process variables represent the system state at the same instant of time. However, this is never true in current network systems, because of the unknown deterministic or stochastic transmission delays introduced by the communication network. During the diagnosing stage, this will often generate false alarms. Under nominal operation, the different transmission delays associated with the variables that appear in the computation form produce discrepancies of the residuals from zero. A technique aiming at the minimisation of the resulting false alarms rate, that is based on the explicit modelling of communication delays and on their best-case estimation is proposed
Resumo:
In the context of the digital business ecosystems, small organizations cooperate between them in order to achieve common goals or offer new services for expanding their markets. There are different approaches for these cooperation models such as virtual enterprises, virtual organizations or dynamic electronic institutions which in their lifecycle have in common a dissolution phase. However this phase has not been studied deeply in the current literature and it lacks formalization. In this paper a first approach for achieving and managing the dissolution phase is proposed, as well as a CBR process in order to support it in a multi-agent system
Resumo:
This paper proposes to promote autonomy in digital ecosystems so that it provides agents with information to improve the behavior of the digital ecosystem in terms of stability. This work proposes that, in digital ecosystems, autonomous agents can provide fundamental services and information. The final goal is to run the ecosystem, generate novel conditions and let agents exploit them. A set of evaluation measures must be defined as well. We want to provide an outline of some global indicators, such as heterogeneity and diversity, and establish relationships between agent behavior and these global indicators to fully understand interactions between agents, and to understand the dependence and autonomy relations that emerge between the interacting agents. Individual variations, interaction dependencies, and environmental factors are determinants of autonomy that would be considered. The paper concludes with a discussion of situations when autonomy is a milestone
Resumo:
To coordinate ambulances for emergency medical services, a multiagent system uses an auction mechanism based on trust. Results of tests using real data show that this system can efficiently assign ambulances to patients, thereby reducing transportation time. Emergency transportation on specialized vehicles is needed when a person's health is in risk of irreparable damage. A patient can't benefit from sophisticated medical treatments and technologies if she or he isn't placed in a proper healthcare center with the appropriate medical team. For example, strokes are neurological emergencies involving a limited amount of time in which treatment measures are effective
Identification and Semiactive Control of Smart Structures Equipped with Magnetorheological Actuators
Resumo:
This paper deals with the problem of identification and semiactive control of smart structures subject to unknown external disturbances such as earthquake, wind, etc. The experimental setup used is a 6-story test structure equipped with shear-mode semiactive magnetorheological actuators being installed in WUSCEEL. The experimental results obtained have verified the effectiveness of the proposed control algorithms
Resumo:
Monitor a distribution network implies working with a huge amount of data coining from the different elements that interact in the network. This paper presents a visualization tool that simplifies the task of searching the database for useful information applicable to fault management or preventive maintenance of the network