37 resultados para visual data analysis
Resumo:
In the eighties, John Aitchison (1986) developed a new methodological approach for the statistical analysis of compositional data. This new methodology was implemented in Basic routines grouped under the name CODA and later NEWCODA inMatlab (Aitchison, 1997). After that, several other authors have published extensions to this methodology: Marín-Fernández and others (2000), Barceló-Vidal and others (2001), Pawlowsky-Glahn and Egozcue (2001, 2002) and Egozcue and others (2003). (...)
Resumo:
In an earlier investigation (Burger et al., 2000) five sediment cores near the Rodrigues Triple Junction in the Indian Ocean were studied applying classical statistical methods (fuzzy c-means clustering, linear mixing model, principal component analysis) for the extraction of endmembers and evaluating the spatial and temporal variation of geochemical signals. Three main factors of sedimentation were expected by the marine geologists: a volcano-genetic, a hydro-hydrothermal and an ultra-basic factor. The display of fuzzy membership values and/or factor scores versus depth provided consistent results for two factors only; the ultra-basic component could not be identified. The reason for this may be that only traditional statistical methods were applied, i.e. the untransformed components were used and the cosine-theta coefficient as similarity measure. During the last decade considerable progress in compositional data analysis was made and many case studies were published using new tools for exploratory analysis of these data. Therefore it makes sense to check if the application of suitable data transformations, reduction of the D-part simplex to two or three factors and visual interpretation of the factor scores would lead to a revision of earlier results and to answers to open questions . In this paper we follow the lines of a paper of R. Tolosana- Delgado et al. (2005) starting with a problem-oriented interpretation of the biplot scattergram, extracting compositional factors, ilr-transformation of the components and visualization of the factor scores in a spatial context: The compositional factors will be plotted versus depth (time) of the core samples in order to facilitate the identification of the expected sources of the sedimentary process. Kew words: compositional data analysis, biplot, deep sea sediments
Resumo:
Many multivariate methods that are apparently distinct can be linked by introducing one or more parameters in their definition. Methods that can be linked in this way are correspondence analysis, unweighted or weighted logratio analysis (the latter also known as "spectral mapping"), nonsymmetric correspondence analysis, principal component analysis (with and without logarithmic transformation of the data) and multidimensional scaling. In this presentation I will show how several of these methods, which are frequently used in compositional data analysis, may be linked through parametrizations such as power transformations, linear transformations and convex linear combinations. Since the methods of interest here all lead to visual maps of data, a "movie" can be made where where the linking parameter is allowed to vary in small steps: the results are recalculated "frame by frame" and one can see the smooth change from one method to another. Several of these "movies" will be shown, giving a deeper insight into the similarities and differences between these methods
Resumo:
These notes have been prepared as support to a short course on compositional data analysis. Their aim is to transmit the basic concepts and skills for simple applications, thus setting the premises for more advanced projects
Resumo:
We take stock of the present position of compositional data analysis, of what has been achieved in the last 20 years, and then make suggestions as to what may be sensible avenues of future research. We take an uncompromisingly applied mathematical view, that the challenge of solving practical problems should motivate our theoretical research; and that any new theory should be thoroughly investigated to see if it may provide answers to previously abandoned practical considerations. Indeed a main theme of this lecture will be to demonstrate this applied mathematical approach by a number of challenging examples
Resumo:
One of the tantalising remaining problems in compositional data analysis lies in how to deal with data sets in which there are components which are essential zeros. By an essential zero we mean a component which is truly zero, not something recorded as zero simply because the experimental design or the measuring instrument has not been sufficiently sensitive to detect a trace of the part. Such essential zeros occur in many compositional situations, such as household budget patterns, time budgets, palaeontological zonation studies, ecological abundance studies. Devices such as nonzero replacement and amalgamation are almost invariably ad hoc and unsuccessful in such situations. From consideration of such examples it seems sensible to build up a model in two stages, the first determining where the zeros will occur and the second how the unit available is distributed among the non-zero parts. In this paper we suggest two such models, an independent binomial conditional logistic normal model and a hierarchical dependent binomial conditional logistic normal model. The compositional data in such modelling consist of an incidence matrix and a conditional compositional matrix. Interesting statistical problems arise, such as the question of estimability of parameters, the nature of the computational process for the estimation of both the incidence and compositional parameters caused by the complexity of the subcompositional structure, the formation of meaningful hypotheses, and the devising of suitable testing methodology within a lattice of such essential zero-compositional hypotheses. The methodology is illustrated by application to both simulated and real compositional data
Resumo:
One of the disadvantages of old age is that there is more past than future: this, however, may be turned into an advantage if the wealth of experience and, hopefully, wisdom gained in the past can be reflected upon and throw some light on possible future trends. To an extent, then, this talk is necessarily personal, certainly nostalgic, but also self critical and inquisitive about our understanding of the discipline of statistics. A number of almost philosophical themes will run through the talk: search for appropriate modelling in relation to the real problem envisaged, emphasis on sensible balances between simplicity and complexity, the relative roles of theory and practice, the nature of communication of inferential ideas to the statistical layman, the inter-related roles of teaching, consultation and research. A list of keywords might be: identification of sample space and its mathematical structure, choices between transform and stay, the role of parametric modelling, the role of a sample space metric, the underused hypothesis lattice, the nature of compositional change, particularly in relation to the modelling of processes. While the main theme will be relevance to compositional data analysis we shall point to substantial implications for general multivariate analysis arising from experience of the development of compositional data analysis…
Resumo:
The application of compositional data analysis through log ratio trans- formations corresponds to a multinomial logit model for the shares themselves. This model is characterized by the property of Independence of Irrelevant Alter- natives (IIA). IIA states that the odds ratio in this case the ratio of shares is invariant to the addition or deletion of outcomes to the problem. It is exactly this invariance of the ratio that underlies the commonly used zero replacement procedure in compositional data analysis. In this paper we investigate using the nested logit model that does not embody IIA and an associated zero replacement procedure and compare its performance with that of the more usual approach of using the multinomial logit model. Our comparisons exploit a data set that com- bines voting data by electoral division with corresponding census data for each division for the 2001 Federal election in Australia
Resumo:
Examples of compositional data. The simplex, a suitable sample space for compositional data and Aitchison's geometry. R, a free language and environment for statistical computing and graphics
Resumo:
Compositional data naturally arises from the scientific analysis of the chemical composition of archaeological material such as ceramic and glass artefacts. Data of this type can be explored using a variety of techniques, from standard multivariate methods such as principal components analysis and cluster analysis, to methods based upon the use of log-ratios. The general aim is to identify groups of chemically similar artefacts that could potentially be used to answer questions of provenance. This paper will demonstrate work in progress on the development of a documented library of methods, implemented using the statistical package R, for the analysis of compositional data. R is an open source package that makes available very powerful statistical facilities at no cost. We aim to show how, with the aid of statistical software such as R, traditional exploratory multivariate analysis can easily be used alongside, or in combination with, specialist techniques of compositional data analysis. The library has been developed from a core of basic R functionality, together with purpose-written routines arising from our own research (for example that reported at CoDaWork'03). In addition, we have included other appropriate publicly available techniques and libraries that have been implemented in R by other authors. Available functions range from standard multivariate techniques through to various approaches to log-ratio analysis and zero replacement. We also discuss and demonstrate a small selection of relatively new techniques that have hitherto been little-used in archaeometric applications involving compositional data. The application of the library to the analysis of data arising in archaeometry will be demonstrated; results from different analyses will be compared; and the utility of the various methods discussed
Resumo:
”compositions” is a new R-package for the analysis of compositional and positive data. It contains four classes corresponding to the four different types of compositional and positive geometry (including the Aitchison geometry). It provides means for computation, plotting and high-level multivariate statistical analysis in all four geometries. These geometries are treated in an fully analogous way, based on the principle of working in coordinates, and the object-oriented programming paradigm of R. In this way, called functions automatically select the most appropriate type of analysis as a function of the geometry. The graphical capabilities include ternary diagrams and tetrahedrons, various compositional plots (boxplots, barplots, piecharts) and extensive graphical tools for principal components. Afterwards, ortion and proportion lines, straight lines and ellipses in all geometries can be added to plots. The package is accompanied by a hands-on-introduction, documentation for every function, demos of the graphical capabilities and plenty of usage examples. It allows direct and parallel computation in all four vector spaces and provides the beginner with a copy-and-paste style of data analysis, while letting advanced users keep the functionality and customizability they demand of R, as well as all necessary tools to add own analysis routines. A complete example is included in the appendix
Resumo:
We shall call an n × p data matrix fully-compositional if the rows sum to a constant, and sub-compositional if the variables are a subset of a fully-compositional data set1. Such data occur widely in archaeometry, where it is common to determine the chemical composition of ceramic, glass, metal or other artefacts using techniques such as neutron activation analysis (NAA), inductively coupled plasma spectroscopy (ICPS), X-ray fluorescence analysis (XRF) etc. Interest often centres on whether there are distinct chemical groups within the data and whether, for example, these can be associated with different origins or manufacturing technologies
Resumo:
Presentation in CODAWORK'03, session 4: Applications to archeometry
Resumo:
Developments in the statistical analysis of compositional data over the last two decades have made possible a much deeper exploration of the nature of variability, and the possible processes associated with compositional data sets from many disciplines. In this paper we concentrate on geochemical data sets. First we explain how hypotheses of compositional variability may be formulated within the natural sample space, the unit simplex, including useful hypotheses of subcompositional discrimination and specific perturbational change. Then we develop through standard methodology, such as generalised likelihood ratio tests, statistical tools to allow the systematic investigation of a complete lattice of such hypotheses. Some of these tests are simple adaptations of existing multivariate tests but others require special construction. We comment on the use of graphical methods in compositional data analysis and on the ordination of specimens. The recent development of the concept of compositional processes is then explained together with the necessary tools for a staying- in-the-simplex approach, namely compositional singular value decompositions. All these statistical techniques are illustrated for a substantial compositional data set, consisting of 209 major-oxide and rare-element compositions of metamorphosed limestones from the Northeast and Central Highlands of Scotland. Finally we point out a number of unresolved problems in the statistical analysis of compositional processes
Resumo:
First discussion on compositional data analysis is attributable to Karl Pearson, in 1897. However, notwithstanding the recent developments on algebraic structure of the simplex, more than twenty years after Aitchison’s idea of log-transformations of closed data, scientific literature is again full of statistical treatments of this type of data by using traditional methodologies. This is particularly true in environmental geochemistry where besides the problem of the closure, the spatial structure (dependence) of the data have to be considered. In this work we propose the use of log-contrast values, obtained by a simplicial principal component analysis, as LQGLFDWRUV of given environmental conditions. The investigation of the log-constrast frequency distributions allows pointing out the statistical laws able to generate the values and to govern their variability. The changes, if compared, for example, with the mean values of the random variables assumed as models, or other reference parameters, allow defining monitors to be used to assess the extent of possible environmental contamination. Case study on running and ground waters from Chiavenna Valley (Northern Italy) by using Na+, K+, Ca2+, Mg2+, HCO3-, SO4 2- and Cl- concentrations will be illustrated