85 resultados para Estadística matemática
Resumo:
Customer satisfaction and retention are key issues for organizations in today’s competitive market place. As such, much research and revenue has been invested in developing accurate ways of assessing consumer satisfaction at both the macro (national) and micro (organizational) level, facilitating comparisons in performance both within and between industries. Since the instigation of the national customer satisfaction indices (CSI), partial least squares (PLS) has been used to estimate the CSI models in preference to structural equation models (SEM) because they do not rely on strict assumptions about the data. However, this choice was based upon some misconceptions about the use of SEM’s and does not take into consideration more recent advances in SEM, including estimation methods that are robust to non-normality and missing data. In this paper, both SEM and PLS approaches were compared by evaluating perceptions of the Isle of Man Post Office Products and Customer service using a CSI format. The new robust SEM procedures were found to be advantageous over PLS. Product quality was found to be the only driver of customer satisfaction, while image and satisfaction were the only predictors of loyalty, thus arguing for the specificity of postal services
Resumo:
Observations in daily practice are sometimes registered as positive values larger then a given threshold α. The sample space is in this case the interval (α,+∞), α > 0, which can be structured as a real Euclidean space in different ways. This fact opens the door to alternative statistical models depending not only on the assumed distribution function, but also on the metric which is considered as appropriate, i.e. the way differences are measured, and thus variability
Resumo:
This paper is a first draft of the principle of statistical modelling on coordinates. Several causes —which would be long to detail—have led to this situation close to the deadline for submitting papers to CODAWORK’03. The main of them is the fast development of the approach along the last months, which let appear previous drafts as obsolete. The present paper contains the essential parts of the state of the art of this approach from my point of view. I would like to acknowledge many clarifying discussions with the group of people working in this field in Girona, Barcelona, Carrick Castle, Firenze, Berlin, G¨ottingen, and Freiberg. They have given a lot of suggestions and ideas. Nevertheless, there might be still errors or unclear aspects which are exclusively my fault. I hope this contribution serves as a basis for further discussions and new developments
Resumo:
One of the tantalising remaining problems in compositional data analysis lies in how to deal with data sets in which there are components which are essential zeros. By an essential zero we mean a component which is truly zero, not something recorded as zero simply because the experimental design or the measuring instrument has not been sufficiently sensitive to detect a trace of the part. Such essential zeros occur in many compositional situations, such as household budget patterns, time budgets, palaeontological zonation studies, ecological abundance studies. Devices such as nonzero replacement and amalgamation are almost invariably ad hoc and unsuccessful in such situations. From consideration of such examples it seems sensible to build up a model in two stages, the first determining where the zeros will occur and the second how the unit available is distributed among the non-zero parts. In this paper we suggest two such models, an independent binomial conditional logistic normal model and a hierarchical dependent binomial conditional logistic normal model. The compositional data in such modelling consist of an incidence matrix and a conditional compositional matrix. Interesting statistical problems arise, such as the question of estimability of parameters, the nature of the computational process for the estimation of both the incidence and compositional parameters caused by the complexity of the subcompositional structure, the formation of meaningful hypotheses, and the devising of suitable testing methodology within a lattice of such essential zero-compositional hypotheses. The methodology is illustrated by application to both simulated and real compositional data
Resumo:
The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Central notations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform. In this way very elaborated aspects of mathematical statistics can be understood easily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating, combination of likelihood and robust M-estimation functions are simple additions/ perturbations in A2(Pprior). Weighting observations corresponds to a weighted addition of the corresponding evidence. Likelihood based statistics for general exponential families turns out to have a particularly easy interpretation in terms of A2(P). Regular exponential families form finite dimensional linear subspaces of A2(P) and they correspond to finite dimensional subspaces formed by their posterior in the dual information space A2(Pprior). The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P. The discussion of A2(P) valued random variables, such as estimation functions or likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
Resumo:
One of the disadvantages of old age is that there is more past than future: this, however, may be turned into an advantage if the wealth of experience and, hopefully, wisdom gained in the past can be reflected upon and throw some light on possible future trends. To an extent, then, this talk is necessarily personal, certainly nostalgic, but also self critical and inquisitive about our understanding of the discipline of statistics. A number of almost philosophical themes will run through the talk: search for appropriate modelling in relation to the real problem envisaged, emphasis on sensible balances between simplicity and complexity, the relative roles of theory and practice, the nature of communication of inferential ideas to the statistical layman, the inter-related roles of teaching, consultation and research. A list of keywords might be: identification of sample space and its mathematical structure, choices between transform and stay, the role of parametric modelling, the role of a sample space metric, the underused hypothesis lattice, the nature of compositional change, particularly in relation to the modelling of processes. While the main theme will be relevance to compositional data analysis we shall point to substantial implications for general multivariate analysis arising from experience of the development of compositional data analysis…
Resumo:
The biplot has proved to be a powerful descriptive and analytical tool in many areas of applications of statistics. For compositional data the necessary theoretical adaptation has been provided, with illustrative applications, by Aitchison (1990) and Aitchison and Greenacre (2002). These papers were restricted to the interpretation of simple compositional data sets. In many situations the problem has to be described in some form of conditional modelling. For example, in a clinical trial where interest is in how patients’ steroid metabolite compositions may change as a result of different treatment regimes, interest is in relating the compositions after treatment to the compositions before treatment and the nature of the treatments applied. To study this through a biplot technique requires the development of some form of conditional compositional biplot. This is the purpose of this paper. We choose as a motivating application an analysis of the 1992 US President ial Election, where interest may be in how the three-part composition, the percentage division among the three candidates - Bush, Clinton and Perot - of the presidential vote in each state, depends on the ethnic composition and on the urban-rural composition of the state. The methodology of conditional compositional biplots is first developed and a detailed interpretation of the 1992 US Presidential Election provided. We use a second application involving the conditional variability of tektite mineral compositions with respect to major oxide compositions to demonstrate some hazards of simplistic interpretation of biplots. Finally we conjecture on further possible applications of conditional compositional biplots
Resumo:
The use of orthonormal coordinates in the simplex and, particularly, balance coordinates, has suggested the use of a dendrogram for the exploratory analysis of compositional data. The dendrogram is based on a sequential binary partition of a compositional vector into groups of parts. At each step of a partition, one group of parts is divided into two new groups, and a balancing axis in the simplex between both groups is defined. The set of balancing axes constitutes an orthonormal basis, and the projections of the sample on them are orthogonal coordinates. They can be represented in a dendrogram-like graph showing: (a) the way of grouping parts of the compositional vector; (b) the explanatory role of each subcomposition generated in the partition process; (c) the decomposition of the total variance into balance components associated with each binary partition; (d) a box-plot of each balance. This representation is useful to help the interpretation of balance coordinates; to identify which are the most explanatory coordinates; and to describe the whole sample in a single diagram independently of the number of parts of the sample
Resumo:
The application of compositional data analysis through log ratio trans- formations corresponds to a multinomial logit model for the shares themselves. This model is characterized by the property of Independence of Irrelevant Alter- natives (IIA). IIA states that the odds ratio in this case the ratio of shares is invariant to the addition or deletion of outcomes to the problem. It is exactly this invariance of the ratio that underlies the commonly used zero replacement procedure in compositional data analysis. In this paper we investigate using the nested logit model that does not embody IIA and an associated zero replacement procedure and compare its performance with that of the more usual approach of using the multinomial logit model. Our comparisons exploit a data set that com- bines voting data by electoral division with corresponding census data for each division for the 2001 Federal election in Australia
Resumo:
This analysis was stimulated by the real data analysis problem of household expenditure data. The full dataset contains expenditure data for a sample of 1224 households. The expenditure is broken down at 2 hierarchical levels: 9 major levels (e.g. housing, food, utilities etc.) and 92 minor levels. There are also 5 factors and 5 covariates at the household level. Not surprisingly, there are a small number of zeros at the major level, but many zeros at the minor level. The question is how best to model the zeros. Clearly, models that try to add a small amount to the zero terms are not appropriate in general as at least some of the zeros are clearly structural, e.g. alcohol/tobacco for households that are teetotal. The key question then is how to build suitable conditional models. For example, is the sub-composition of spending excluding alcohol/tobacco similar for teetotal and non-teetotal households? In other words, we are looking for sub-compositional independence. Also, what determines whether a household is teetotal? Can we assume that it is independent of the composition? In general, whether teetotal will clearly depend on the household level variables, so we need to be able to model this dependence. The other tricky question is that with zeros on more than one component, we need to be able to model dependence and independence of zeros on the different components. Lastly, while some zeros are structural, others may not be, for example, for expenditure on durables, it may be chance as to whether a particular household spends money on durables within the sample period. This would clearly be distinguishable if we had longitudinal data, but may still be distinguishable by looking at the distribution, on the assumption that random zeros will usually be for situations where any non-zero expenditure is not small. While this analysis is based on around economic data, the ideas carry over to many other situations, including geological data, where minerals may be missing for structural reasons (similar to alcohol), or missing because they occur only in random regions which may be missed in a sample (similar to the durables)
Resumo:
Examples of compositional data. The simplex, a suitable sample space for compositional data and Aitchison's geometry. R, a free language and environment for statistical computing and graphics
Resumo:
All of the imputation techniques usually applied for replacing values below the detection limit in compositional data sets have adverse effects on the variability. In this work we propose a modification of the EM algorithm that is applied using the additive log-ratio transformation. This new strategy is applied to a compositional data set and the results are compared with the usual imputation techniques
Resumo:
In the eighties, John Aitchison (1986) developed a new methodological approach for the statistical analysis of compositional data. This new methodology was implemented in Basic routines grouped under the name CODA and later NEWCODA inMatlab (Aitchison, 1997). After that, several other authors have published extensions to this methodology: Marín-Fernández and others (2000), Barceló-Vidal and others (2001), Pawlowsky-Glahn and Egozcue (2001, 2002) and Egozcue and others (2003). (...)
Resumo:
Compositional data naturally arises from the scientific analysis of the chemical composition of archaeological material such as ceramic and glass artefacts. Data of this type can be explored using a variety of techniques, from standard multivariate methods such as principal components analysis and cluster analysis, to methods based upon the use of log-ratios. The general aim is to identify groups of chemically similar artefacts that could potentially be used to answer questions of provenance. This paper will demonstrate work in progress on the development of a documented library of methods, implemented using the statistical package R, for the analysis of compositional data. R is an open source package that makes available very powerful statistical facilities at no cost. We aim to show how, with the aid of statistical software such as R, traditional exploratory multivariate analysis can easily be used alongside, or in combination with, specialist techniques of compositional data analysis. The library has been developed from a core of basic R functionality, together with purpose-written routines arising from our own research (for example that reported at CoDaWork'03). In addition, we have included other appropriate publicly available techniques and libraries that have been implemented in R by other authors. Available functions range from standard multivariate techniques through to various approaches to log-ratio analysis and zero replacement. We also discuss and demonstrate a small selection of relatively new techniques that have hitherto been little-used in archaeometric applications involving compositional data. The application of the library to the analysis of data arising in archaeometry will be demonstrated; results from different analyses will be compared; and the utility of the various methods discussed
Resumo:
”compositions” is a new R-package for the analysis of compositional and positive data. It contains four classes corresponding to the four different types of compositional and positive geometry (including the Aitchison geometry). It provides means for computation, plotting and high-level multivariate statistical analysis in all four geometries. These geometries are treated in an fully analogous way, based on the principle of working in coordinates, and the object-oriented programming paradigm of R. In this way, called functions automatically select the most appropriate type of analysis as a function of the geometry. The graphical capabilities include ternary diagrams and tetrahedrons, various compositional plots (boxplots, barplots, piecharts) and extensive graphical tools for principal components. Afterwards, ortion and proportion lines, straight lines and ellipses in all geometries can be added to plots. The package is accompanied by a hands-on-introduction, documentation for every function, demos of the graphical capabilities and plenty of usage examples. It allows direct and parallel computation in all four vector spaces and provides the beginner with a copy-and-paste style of data analysis, while letting advanced users keep the functionality and customizability they demand of R, as well as all necessary tools to add own analysis routines. A complete example is included in the appendix