182 resultados para métodos de identificação
Resumo:
Tomado del resumen del autor. Contiene anexos de cuadros y gráficos
Resumo:
Resumen basado en el de la publicación
Resumo:
Crónica del Seminario de métodos filosóficos celebrado en Granada, los días 2 al 7 de abril de 1979, dedicado al profesorado de Filosofía, sobre los métodos filosóficos analítico, fenomenológico, dialéctico y hermenéutico, y su contribución a la Filosofía.
Resumo:
Reflexión sobre las cuatro tendencias existentes en el campo conceptual y metodológico de los estudios geográficos: la tradicional, la cuantitativa, la radical y la humanística, y sobre los objetivos de la geografía y la metodología de investigación y enseñanza más adecuada, así como las relaciones de la estadística con la metodología de estudio de las ciencias geográficas.
Resumo:
Lección sobre los distintos métodos lógicos que se pueden aplicar para la resolución de un planteamiento cualquiera. Entre los métodos sintácticos se encuentran el método axiomático y el de deducción natural. Entre los métodos semánticos, se utilizan el de las tablas semánticas y la utilización de interpretaciones y modelos para pruebas de independencia. Entre los métodos algorítmicos, destacan los métodos de decisión y los problemas conectados con la decibilidad.
Resumo:
Todos los años al comenzar el curso dedico una clase a explicar por qué es tan importante el latín en el bachillerato. El latín es una disciplina formativa y no informativa por eso se le ha llamado las matemáticas de las letras y se ha dicho que la verdadera utilidad del latín está en su dificultad. Ninguna otra asignatura obliga a ejercitar a la vez las tres potencias del alma: memoria, entendimiento y voluntad; facilita el aprendizaje de las lenguas romances al ser el español una evolución del latín; es lengua internacional de cultura; se emplea junto al griego como base para la nomenclatura técnica de muchas ciencias, desarrolla la personalidad porque la lectura de los clásicos, tanto griegos como latinos, constituye una introducción de indudable valor y aplicación directa a todas las facetas de la vida. Pero a pesar de todas estas ventajas la importancia del latín se debe centrar en una sola razón que las engloba a todas. El conocimiento del mundo del latín, de su lengua y literatura, porque los latinos han jugado un gran papel en la formación del mundo moderno y en su desarrollo hasta nuestros días.
Resumo:
Compendio de los principales contenidos tratados en la reunión de Catedráticos de Matemáticas en Madrid, en marzo de 1961, organizada por el C.O.D. Se detallan aspectos como los métodos en el Bachillerato, la unidad didáctica y los Seminarios Didácticos, el profesorado y el material pedagógico. Se incluyen los nombres de los participantes, el programa de la reunión, y un temario, cuyos temas fueron estudiados por ponencias, realizadas por una serie de Catedráticos que se indican. Se recoge cada una de las ponencias. Por último, completaron el programa de esta reunión interesantes visitas al Instituto Nacional de Estadística, Telefónica y Experiencias Industriales, S.A., de Aranjuez, donde pudieron apreciarse los avances de la técnica y sus relaciones con el progreso de la Matemática.
Resumo:
Síntesis de los temas tratados en la Reunión de estudio sobre el contenido y métodos de la enseñanza relativa a las Naciones Unidas, a las instituciones especializadas y a los métodos propios para favorecer en los centros de educación primaria y media la comprensión entre las naciones, el conocimiento de los problemas mundiales y la formación de buenos ciudadanos. Se incluye el informe de conclusiones adoptado por el grupo de estudio de la enseñanza media.
Resumo:
Esbozo de las principales directrices establecidas en la I Reunión de Profesores de Matemáticas, celebrada en Madrid, en 1956, para la renovación de los métodos pedagógicos de la asignatura de Matemáticas en la enseñanza secundaria.
Resumo:
Se pide la cooperación del profesorado para la renovación de la enseñanza media, mediante la contestación de una serie de cuestionarios sobre metodología y material de ciencias, para mejorar las clases del bachillerato.
Resumo:
Se presentan las novedades que ha experimentado la Enseñanza secundaria en Francia en cuanto al cambio de métodos y horarios coordinados con los establecimientos de enseñanza primaria. Además, se transcribe la crónica de Pilar Narvión sobre la experiencia en la que los periodistas acuden a los Liceos a explicar a los alumnos los quehaceres cotidianos, poniéndolos en contacto con la realidad.
Resumo:
Se intercalan fotografías que ilustran las instalaciones y las actividades que se dan lugar en el 'Tajamar'
Resumo:
Se exponen las normas de organización y funcionamiento del Instituto Nacional de Enseñanza Media de Granada como Escuela de Formación del Profesorado de Grado Medio 'Padre Manjón' y, también, del Instituto mixto de Enseñanza Media en Porriño (Pontevedra). Se disponen también datos acerca de: el comienzo de actividades de nuevos Institutos y Secciones Delegadas para el año académico 1966-1967, algunas obras de construcción, ampliación o mejora en este tipo de centros, donaciones de terrenos para Institutos Técnicos, centros de patronato, centros libres adoptados, Colegios Menores, centros no oficiales, estudios nocturnos, centros de preuniversitario, creación de nuevos puestos escolares en centros no oficiales y centros de interés social.
Resumo:
Se presenta un resumen sobre los temas de estudio tratados durante el X Congreso de la Federación Internacional de Profesores de Lenguas Vivas, celebrado en Zagreb (Yugoslavia), y cuyo tema general fue: 'Los métodos activos y modernos medios auxiliares para la enseñanza de las Lenguas extranjeras', y donde se destaca la importancia de consolidar y extender los nuevos métodos pedagógicos de estimulación con el fin de conseguir un mayor rendimiento en la labor docente.
Resumo:
Se trata el proceso construcción de la disciplina matemática llamada topología, los problemas que originaron su estudio y los diferentes métodos utilizados. Se tratan las transformaciones y propiedades topológicas, la clasificación de superficies o topología geométrica, la clasificación de variedades o topología combinatoria y algebraica, y la clasificación de conjuntos o topología general.