550 resultados para TEORÍA MODERNA DE PORTAFOLIOS
Resumo:
Se estudia la teoría de grafos en relación con el teorema de Euler. La teoría de grafos se refiere a la teoría de conjuntos relativa a las relaciones binarias de un conjunto numerable consigo mismo. Esta teoría posee un vasto campo de aplicaciones en Física, Economía, Teoría de la Información, Programación Lineal, Transportas, Psicología, e incluso en ciertos dominios del arte. Se pretende realizar un trabajo que sirva como seminario optativo para los alumnos de COU, que presente a los alumnos un teorema clásico de geometría mediante la teoría de grafos, un aspecto bastante olvidado en los programas. Se utilizan los métodos y el lenguaje de la teoría de grafos para demostrar el teorema de Euler, que liga caras, vértices y aristas de un poliedro regular. Para todo ello en primer lugar se sistematizan una serie de conceptos previos, se analizan las propiedades de distintos tipos de grafos, y por último, se realizan demostraciones.
Resumo:
Se recoge el programa y contenido, casi literal, del Curso de Formación del Profesorado de Enseñanza Media, junto con lecciones de Ciencias, Letras y Formación religiosa, celebrado en Zaragoza en agosto de 1963. En este curso se desarrollan las modernas estructuras matemáticas para aplicar en los programas de Bachillerato, con el fin de que los profesores de matemáticas estén formados en las nuevas corrientes. Al final de cada capítulo, se recogen los ejercicios que se propusieron en las clases prácticas desarrolladas durante el curso.
Resumo:
En primer lugar, se señalan las principales causas de la separación entre la teoría y la práctica educativa a lo largo de toda la historia de la educación. Se propone un cambio de perspectiva basado en el modelo científico denominado 'evolutivo y circular' según el cual a partir de la práctica se puede elaborar la teoría de la educación, la ruptura de la jerarquización de funciones y la cooperación entre prácticos y teóricos como equipos pedagógicos integrados. A continuación, se analizan las variables que intervienen en el proceso de toma de decisiones pedagógicas según sean los distintos ámbitos de actuación. Por último, se indican las fases de tres modelos de metodología de investigación en el aula que son: los diseños para analizar, concretar y definir problemas, los diseños para la consecución de objetivos, y los diseños para mejorar experiencias realizadas.
Resumo:
Se presenta un informe, con una visión personal, sobre la conferencia de la Reunión Internacional de Física de los países miembros de la OCDE, celebrado en 1964, donde se tratan temas especiales de la enseñanza de la Física en su Grado Medio.
Resumo:
Se ha intentado ver la teoría de los conjuntos en matemáticas como algo nuevo procedente de la matemática moderna , que se puso de moda y se introdujo en esta asignatura. Pero para ver que esto no es así, queremos ver el papel que juega la teoría de los conjuntos en la matemática elemental. El armazón matemático está constituido por teoremas, definiciones, clasificaciones y postulados. En definitiva, si ponemos algún ejemplo de aritmética o de geometría y no sólo nos referiremos a los conjuntos copulativos, sino también a los conjuntos naturales disyuntivos. De lo que se trata es de demostrar que toda la matemática tiene un entramado de conjunto tan relacionado que es imposible entenderlas sin entender los conjuntos al estar cualquier elemento de la misma relacionado por categorías y subcategorías de conjuntos y subconjuntos.
Resumo:
Partiendo de la observación de la naturaleza, podemos atribuir a toda figura rígida diferentes posiciones, ligada cada una de ella a instantes diferentes; cada par de estas posiciones nos marcan un movimiento seguido por la figura. En realidad prescindiremos de todo tiempo para llegar a la noción general de movimiento inicial y final. Entonces tenemos un conjunto de pares ordenados (F, Fï) (F posición inicial y Fï posición final) de tal forma que a todo punto A de F le podemos hacer corresponder A de Fï siendo uno el homólogo de otro, su movimiento y su identidad. A partir de aquí desarrollaremos al teoría de la semejanza en un triángulo siguiendo el teorema de Tales de la homotecia. De gran importancia en matemáticas. Todo ello, hay que interpretarlo con la prudencia, pues no olvidemos que aún siguiendo las directrices de muchos matemáticos que consideran a la geometría como el estudio del grupo de los movimientos, no se trata de desterrar los clásicos métodos euclídeos, que al fin han sido la base de nuestros conocimientos geométricos.
Resumo:
Transcripción de la conferencia pronunciada por Luis A. Santaló, el 23 de junio de 1965, en la Sociedad Científica Argentina, sobre el concepto de matemática moderna y su evolución a lo largo de la historia, su papel o influencia en el estilo de la investigación, el éxito de su estudio en la enseñanza superior, y el intento de introducirla en la enseñanza secundaria.
Resumo:
Se presentan las posibles agrupaciones que se pueden formar con las proposiciones: conjunto de todas las proposiciones, valoración de una proposición, cálculo proposicional, disyunción, conjunción, negación, consecuencias, implicación, equivalencia, función proposicional sobre un conjunto, disyunción de funciones proposicionales, conjunción de funciones proposicionales, y negación de función proposicional. Como conclusión final se expone que el conjunto de las proposiciones es un álgebra de Boole respecto de la disyunción, conjunción y negación.
Resumo:
Estudio acerca de lo que constituye la matemática moderna en todos los niveles y en especial en el nivel de la enseñanza media. Se hace referencia a las conclusiones elaboradas al respecto, a partir de conferencias organizadas por la Société Mathématique de Francia en colaboración con L'Association des Professeurs de Mathématiques de l'Enseignement Public en el año 1956. El problema central que ha preocupado en todas estas reuniones ha sido: cual es la matemática que debe enseñarse en la actualidad en los diversos grados y especialidades en los que interviene esta disciplina. A continuación se tratan en profundidad aspectos como el origen del problema de la enseñanza de las matemáticas, se reflexiona acerca de lo que es la matemática moderna, y se realizan las consecuentes impugnaciones o críticas a esta matemática moderna, destacando lo enormemente abstracta que resulta. Para terminar se señalan una serie de conclusiones generales.
Resumo:
Estudio destinado a facilitar la preparación de un informe internacional sobre una concepción moderna de la enseñanza de la física. El estudio se ha encargado a un comité que tiene por misión estudiar cómo podría reformarse la enseñanza de la Física en los Centros docentes. La necesidad de un cambio parece evidente y es generalmente admitida, dado que otros grupos, tanto en América como el Reino Unido, se consagran también al examen de esta cuestión. Se analizan los defectos inherentes al sistema actual de enseñanza pública, los niños a los que va dirigido el programa, los métodos de enseñanza de la física, los trabajos prácticos, la enseñanza de las matemáticas a los estudiantes de física, los exámenes, el reclutamiento de los profesores de física, y los manuales y medios auxiliares de la enseñanza. Como conclusiones se enfatiza la necesidad de proceder a una refundición completa de los programas escolares de Física y de modificar profundamente el concepto que los profesores se forman de su tarea, así como los objetivos hasta ahora encomendados a la enseñanza de esta disciplina.
Resumo:
Estudio acerca del desarrollo de la ciencia matemática a lo largo de la historia. Se destaca que el conocimiento de las matemáticas permite a los más jóvenes ser más libres. Posteriormente se destacan tres aspectos muy característicos en esta maduración de la ciencia matemática: una preocupación creciente por el rigor, la intervención sistemática de lo axiomático y una abstracción cada vez mayor. En base a estos tres aspectos se analizan las figuras más significativas de las matemáticas y sus principales aportes. La matemática abstracta sería el máximo punto en ese desarrollo, que se inicia en 1920, gracias a figuras como Artin, Noether o Van der Waerden. Se destaca que el punto de partida de la Matemática moderna es lo teoría de conjuntos, necesaria para definir estructuras susceptibles de aplicarse a cualquier especie de objetos. La matemática moderna, se presenta así como un saber muy lejano a la matemática clásica, por su lenguaje, por su simbolismo, por sus aires de abstracción, por los problemas de que se ocupa etc. Para finalizar se subraya la idea de que la evolución, en este caso de la ciencia matemática, no es un hecho aislado, sino una tendencia universal hacia una mayor madurez y dominio del mundo material.
Resumo:
Se desarrollan los siguientes temas sobre Teoría Física del Color: generalidades; fuentes de luz y distribución espectral de la radiación emitida por el cuerpo negro; flujo luminoso y magnitudes derivadas; flujo radiante y flujo luminoso, rendimiento luminoso de una radiación monocromática y de una radiación compleja; absorción por un medio, leyes, transmisión y densidad óptica, coeficiente molecular de extinción; luminosidad de una solución o de una superficie; características cromáticas de la luz; mezcla aditiva de colores, especificación de un color en función de tres primarios; especificación de un color según las normas de la Comisión Internacional de Iluminación, curva lugar del espectro; coeficientes cromáticos de una radiación compleja; determinación de los coeficientes cromáticos de una solución o superficie coloreada; algunas propiedades del diagrama cromático y caracterización de un color por su longitud de onda dominante y pureza.
Resumo:
Se desarrollan varias lecciones sobre la teoría de la Divisibilidad, tales como: las reglas de divisibilidad por los módulos más sencillos, los números primos y la obtención de otro criterio general de divisibilidad fundado en la descomposición factorial de los números.
Resumo:
Se analizan los contenidos del curso de matemáticas para profesores adjuntos de Institutos Nacionales, celebrado en Valencia en el año 1965. Se trataron temas de didáctica de las matemáticas y matemática moderna. El curso fue teórico-práctico y los profesores cursillistas trabajaban en grupo, lo que daba lugar a deliberaciones en común. Los temas tratados en el cursillo se desarrollan en el programa adjunto: idea de la matemática moderna, teoría de los conjuntos, relaciones de equivalencia, binarias y de orden, números naturales y otros tantos aspectos matemáticos.
Resumo:
Resumen basado en el de la publicación. Monográfico con el título: 'La educación ante la inclusión del alumnado con necesidades específicas de apoyo'