5 resultados para Subgroup Relations

em Universit


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gegenstand der vorliegenden Arbeit ist die Analyse verschiedener Formalismen zur Berechnung binärer Wortrelationen. Dabei ist die Grundlage aller hier ausgeführten Betrachtungen das Modell der Restart-Automaten, welches 1995 von Jancar et. al. eingeführt wurde. Zum einen wird das bereits für Restart-Automaten bekannte Konzept der input/output- und proper-Relationen weiterführend untersucht, sowie auf Systeme von zwei parallel arbeitenden und miteinander kommunizierenden Restart-Automaten (PC-Systeme) erweitert. Zum anderen wird eine Variante der Restart-Automaten eingeführt, die sich an klassischen Automatenmodellen zur Berechnung von Relationen orientiert. Mit Hilfe dieser Mechanismen kann gezeigt werden, dass einige Klassen, die durch input/output- und proper-Relationen von Restart Automaten definiert werden, mit den traditionellen Relationsklassen der Rationalen Relationen und der Pushdown-Relationen übereinstimmen. Weiterhin stellt sich heraus, dass das Konzept der parallel kommunizierenden Automaten äußerst mächtig ist, da bereits die Klasse der proper-Relationen von monotonen PC-Systemen alle berechenbaren Relationen umfasst. Der Haupteil der Arbeit beschäftigt sich mit den so genannten Restart-Transducern, welche um eine Ausgabefunktion erweiterte Restart-Automaten sind. Es zeigt sich, dass sich insbesondere dieses Modell mit seinen verschiedenen Erweiterungen und Einschränkungen dazu eignet, eine umfassende Hierarchie von Relationsklassen zu etablieren. In erster Linie seien hier die verschiedenen Typen von monotonen Restart-Transducern erwähnt, mit deren Hilfe viele interessante neue und bekannte Relationsklassen innerhalb der längenbeschränkten Pushdown-Relationen charakterisiert werden. Abschließend wird, im Kontrast zu den vorhergehenden Modellen, das nicht auf Restart-Automaten basierende Konzept des Übersetzens durch Beobachtung ("Transducing by Observing") zur Relationsberechnung eingeführt. Dieser, den Restart-Transducern nicht unähnliche Mechanismus, wird im weitesten Sinne dazu genutzt, einen anderen Blickwinkel auf die von Restart-Transducern definierten Relationen einzunehmen, sowie eine obere Schranke für die Berechnungskraft der Restart-Transducer zu gewinnen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Harmonische Funktionen auf dem Bruhat-Tits-Gebäude der PGL(3) über Funktionenkörpern lassen sich als ein Analogon zu den auf der oberen Halbebene definierten klassischen Spitzenformen verstehen. An die Stelle des starken Abklingens der Spitzenformen tritt hier die Endlichkeit des Trägers modulo einer gewissen Untergruppe. Der erste Teil der vorliegenden Arbeit befaßt sich mit der Untersuchung und Charakterisierung dieses Trägers. Im weiteren Verlauf werden gewisse Konzepte der klassischen Theorie auf harmonische Funktionen übertragen. So wird gezeigt, daß diese sich ebenfalls als Fourierreihe darstellen lassen und es werden explizite Formeln für die Fourierkoeffizienten hergeleitet. Es stellt sich heraus, daß sich die Harmonizität in gewissen Relationen zwischen den Fourierkoeffizienten widerspiegelt und sich umgekehrt aus einem Satz passender Koeffizienten eine harmonische Funktion erzeugen läßt. Dies wird zur expliziten Konstruktion zweier quasi-harmonischer Funktionen genutzt, die ein Pendant zu klassischen Poincaré-Reihen darstellen. Abschließend werden Hecke-Operatoren definiert und Formeln für die Fourierkoeffizienten der Hecke-Transformierten einer harmonischen Funktion hergeleitet.