4 resultados para Interpolation variance
em Universit
Resumo:
Ausgangspunkt der Dissertation ist ein von V. Maz'ya entwickeltes Verfahren, eine gegebene Funktion f : Rn ! R durch eine Linearkombination fh radialer glatter exponentiell fallender Basisfunktionen zu approximieren, die im Gegensatz zu den Splines lediglich eine näherungsweise Zerlegung der Eins bilden und somit ein für h ! 0 nicht konvergentes Verfahren definieren. Dieses Verfahren wurde unter dem Namen Approximate Approximations bekannt. Es zeigt sich jedoch, dass diese fehlende Konvergenz für die Praxis nicht relevant ist, da der Fehler zwischen f und der Approximation fh über gewisse Parameter unterhalb der Maschinengenauigkeit heutiger Rechner eingestellt werden kann. Darüber hinaus besitzt das Verfahren große Vorteile bei der numerischen Lösung von Cauchy-Problemen der Form Lu = f mit einem geeigneten linearen partiellen Differentialoperator L im Rn. Approximiert man die rechte Seite f durch fh, so lassen sich in vielen Fällen explizite Formeln für die entsprechenden approximativen Volumenpotentiale uh angeben, die nur noch eine eindimensionale Integration (z.B. die Errorfunktion) enthalten. Zur numerischen Lösung von Randwertproblemen ist das von Maz'ya entwickelte Verfahren bisher noch nicht genutzt worden, mit Ausnahme heuristischer bzw. experimenteller Betrachtungen zur sogenannten Randpunktmethode. Hier setzt die Dissertation ein. Auf der Grundlage radialer Basisfunktionen wird ein neues Approximationsverfahren entwickelt, welches die Vorzüge der von Maz'ya für Cauchy-Probleme entwickelten Methode auf die numerische Lösung von Randwertproblemen überträgt. Dabei werden stellvertretend das innere Dirichlet-Problem für die Laplace-Gleichung und für die Stokes-Gleichungen im R2 behandelt, wobei für jeden der einzelnen Approximationsschritte Konvergenzuntersuchungen durchgeführt und Fehlerabschätzungen angegeben werden.
Resumo:
We present a general method of generating continuous fractal interpolation surfaces by iterated function systems on an arbitrary data set over rectangular grids and estimate their Box-counting dimension.
Resumo:
A recurrent iterated function system (RIFS) is a genaralization of an IFS and provides nonself-affine fractal sets which are closer to natural objects. In general, it's attractor is not a continuous surface in R3. A recurrent fractal interpolation surface (RFIS) is an attractor of RIFS which is a graph of bivariate continuous interpolation function. We introduce a general method of generating recurrent interpolation surface which are at- tractors of RIFSs about any data set on a grid.
Resumo:
Zur Abbildung heterogener Standorteigenschaften und Ertragspotenziale werden zunehmend flächenhafte Daten nachgefragt. Insbesondere für Grünland, das häufig durch ausgeprägte Standortheterogenität gekennzeichnet ist, ergeben sich hohe Anforderungen an die Wiedergabequalität, denn die realen Verhältnisse sollen in praktikabler Weise möglichst exakt abgebildet werden. Außerdem können flächenhafte Daten genutzt werden, um Zusammenhänge zwischen teilflächenspezifischen Standorteigenschaften und Grünlandaspekten detaillierter zu analysieren und bisher nicht erkannte Wechselbeziehungen nachzuweisen. Für mitteleuropäisches Grünland lagen zu Beginn dieser Arbeit derartige räumliche Untersuchungen nicht oder nur in Teilaspekten vor. Diese Arbeit befasste sich mit der Analyse von Wirkungsbeziehungen zwischen Standort- und Grünlandmerkmalen auf einer im Nordhessischen Hügelland (Deutschland) weitgehend praxisüblicher bewirtschafteten 20 ha großen Weidefläche. Erhoben wurden als Standortfaktoren die Geländemorphologie, die Bodentextur, die Grundnährstoffgehalten sowie als Parameter des Grünlandbestandes die botanische Zusammensetzung, der Ertrag und die Qualitätsparameter. Sie wurden sowohl in einem 50 m-Raster ganzflächig, als auch auf drei 50x50 m großen Teilflächen in erhöhter Beprobungsdichte (6,25 m-Rasterweite) aufgenommen. Die relevanten Fragestellungen zielen auf die räumliche und zeitliche Variabilität von Grünlandbestandesparametern innerhalb von Grünlandflächen sowie deren Abhängigkeit von den Standortfaktoren. Ein weiterer Schwerpunkt war die Überprüfung der Frage, ob die reale Variabilität der Zielvariablen durch die Interpolierung der punktuell erfassten Daten wiedergegeben werden kann. Die Beziehungen zwischen Standort- und Grünlandmerkmalen wurden mit monokausalen und multivariaten Ansätzen untersucht. Die Ergebnisse ließen, unabhängig vom Jahreseinfluss, bereits bestimmte Zusammenhänge zwischen botanischer Zusammensetzung und Standort, auch auf dem untersuchten kleinen Maßstab innerhalb der Grünlandfläche, finden. Demzufolge können unterschiedliche Areale abgegrenzt und charakterisiert werden, die als Grundlage für Empfehlungen zur Ausweisung von Arealen zur teilspezifischen Bewirtschaftung erarbeitet wurden. Die Validierung der interpolierten Daten zeigte, dass die 50-m Rasterbeprobung nur eine begrenzte Wiedergabe der räumlichen Variabilität ermöglicht. Inwieweit derartige Beziehungen quantitativ genauer beschreibbar sind, bleibt auf Grund der verbliebenen unerklärten Varianz im Datensatz dieser Studie offen.