2 resultados para Asymptotic WKB-type approximation
em Universit
Resumo:
Non-resonant light interacting with diatomics via the polarizability anisotropy couples different rotational states and may lead to strong hybridization of the motion. The modification of shape resonances and low-energy scattering states due to this interaction can be fully captured by an asymptotic model, based on the long-range properties of the scattering (Crubellier et al 2015 New J. Phys. 17 045020). Remarkably, the properties of the field-dressed shape resonances in this asymptotic multi-channel description are found to be approximately linear in the field intensity up to fairly large intensity. This suggests a perturbative single-channel approach to be sufficient to study the control of such resonances by the non-resonant field. The multi-channel results furthermore indicate the dependence on field intensity to present, at least approximately, universal characteristics. Here we combine the nodal line technique to solve the asymptotic Schrödinger equation with perturbation theory. Comparing our single channel results to those obtained with the full interaction potential, we find nodal lines depending only on the field-free scattering length of the diatom to yield an approximate but universal description of the field-dressed molecule, confirming universal behavior.
Resumo:
In dieser Arbeit werden zwei Aspekte bei Randwertproblemen der linearen Elastizitätstheorie untersucht: die Approximation von Lösungen auf unbeschränkten Gebieten und die Änderung von Symmetrieklassen unter speziellen Transformationen. Ausgangspunkt der Dissertation ist das von Specovius-Neugebauer und Nazarov in "Artificial boundary conditions for Petrovsky systems of second order in exterior domains and in other domains of conical type"(Math. Meth. Appl. Sci, 2004; 27) eingeführte Verfahren zur Untersuchung von Petrovsky-Systemen zweiter Ordnung in Außenraumgebieten und Gebieten mit konischen Ausgängen mit Hilfe der Methode der künstlichen Randbedingungen. Dabei werden für die Ermittlung von Lösungen der Randwertprobleme die unbeschränkten Gebiete durch das Abschneiden mit einer Kugel beschränkt, und es wird eine künstliche Randbedingung konstruiert, um die Lösung des Problems möglichst gut zu approximieren. Das Verfahren wird dahingehend verändert, dass das abschneidende Gebiet ein Polyeder ist, da es für die Lösung des Approximationsproblems mit üblichen Finite-Element-Diskretisierungen von Vorteil sei, wenn das zu triangulierende Gebiet einen polygonalen Rand besitzt. Zu Beginn der Arbeit werden die wichtigsten funktionalanalytischen Begriffe und Ergebnisse der Theorie elliptischer Differentialoperatoren vorgestellt. Danach folgt der Hauptteil der Arbeit, der sich in drei Bereiche untergliedert. Als erstes wird für abschneidende Polyedergebiete eine formale Konstruktion der künstlichen Randbedingungen angegeben. Danach folgt der Nachweis der Existenz und Eindeutigkeit der Lösung des approximativen Randwertproblems auf dem abgeschnittenen Gebiet und im Anschluss wird eine Abschätzung für den resultierenden Abschneidefehler geliefert. An die theoretischen Ausführungen schließt sich die Betrachtung von Anwendungsbereiche an. Hier werden ebene Rissprobleme und Polarisationsmatrizen dreidimensionaler Außenraumprobleme der Elastizitätstheorie erläutert. Der letzte Abschnitt behandelt den zweiten Aspekt der Arbeit, den Bereich der Algebraischen Äquivalenzen. Hier geht es um die Transformation von Symmetrieklassen, um die Kenntnis der Fundamentallösung der Elastizitätsprobleme für transversalisotrope Medien auch für Medien zu nutzen, die nicht von transversalisotroper Struktur sind. Eine allgemeine Darstellung aller Klassen konnte hier nicht geliefert werden. Als Beispiel für das Vorgehen wird eine Klasse von orthotropen Medien im dreidimensionalen Fall angegeben, die sich auf den Fall der Transversalisotropie reduzieren lässt.