9 resultados para water resources management
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
This study was aim to describe the indigenous knowledge of farmers at Nagari Padang laweh Malalo (NPLM) and their adaptability to climate change. Not only the water scarcity is feared, but climate change is also affecting their food security. Local food security can be achieved if biodiversity in their surrounding area is suitable to the local needs. The study was conducted by using Participatory Rural Appraisal (PRA) such as observation and discussion. The combination of in depth interview, life history, semi structure questionnaire, pictures, mapping and expert interviews was implemented. Data was analyzed by using MAXQDA 10 and F4 audio analysis software. The result shows awareness of the people and scarcity of water conditions has allowed the people of NPLM to face this challenge with wisdom. Aia adat (water resources controlled and regulate by custom) is one of their strategies to distribute the water. The general rule is that irrigation will flow from 6 pm – 6 am regularly to all farm land under supervision of kapalo banda. When rains occur, water resources can be used during the day without special supervision. They were used traditional knowledge to manage water resources for their land and daily usage. This study may be helpful for researcher and other farmers in different region to learn encounter water scarcity.
Resumo:
Water is the very essential livelihood for mankind. The United Nations suggest that each person needs 20-50 litres of water a day to ensure basic needs of drinking, cooking and cleaning. It was also endorsed by the Indian National Water Policy 2002, with the provision that adequate safe drinking water facilities should be provided to the entire population both in urban and in rural areas. About 1.42 million rural habitations in India are affected by chemical contamination. The provision of clean drinking water has been given priority in the Constitution of India, in Article 47 conferring the duty of providing clean drinking water and improving public health standards to the State. Excessive dependence of ground water results in depletion of ground water, water contamination and water borne diseases. Thus, access to safe and reliable water supply is one of the serious concerns in rural water supply programme. Though government takes certain serious steps in addressing the drinking water issues in rural areas, still there is a huge gap between demand and supply. The Draft National Water Policy 2012 also states that Water quality and quantity are interlinked and need to be managed in an integrated manner and with Stakeholder participation. Water Resources Management aims at optimizing the available natural water flows, including surface water and groundwater, to satisfy competing needs. The World Bank also emphasizes on managing water resources, strengthening institutions, identifying and implementing measures of improving water governance and increasing the efficiency of water use. Therefore stakeholders’ participation is viewed important in managing water resources at different levels and range. This paper attempts to reflect up on portray the drinking water issues in rural India, and highlights the significance of Integrated Water Resource Management as the significant part of Millennium Development Goals, and Stakeholders’ participation in water resources management.
Resumo:
Agriculture in the Mojanda Watershed is facing rainfall reductions caused by climate change. Reductions of water availability in the Watershed are also due to constant extension of the agricultural activities into the páramo ecosystem above 3000m a.s.l., with this ecosystem having immanently important functions in the local water balance. The application of pesticides threatens the quality of water and with less precipitation contaminations will further concentrate in the outflow. To analyze problems associated with agricultural practices in the area a questionnaire about agricultural practices (28) was conducted and fields (20) were surveyed for pests and diseases with a focus on potatoes (Solanum tuberosum L.), tree tomatoes (Solanum betaceum Cav.) and peas (Pisum sativum L.). Potatoes were infected to a low degree with Phytophthora infestans and according to the farmers the Andean potato weevil (Premnotrypes spec.) caused biggest losses. To combat the weevil the soils are disinfected with toxic Carbofuran (WHO Class 1B). Tree tomatoes showed symptoms of various fungal diseases. Most important was Fusarium solani causing the branches to rot and Anthracnosis (Colletotrichum gloeosporioides) causing the fruits to rot. Fungicide applications were correspondingly high. Peas were only minorly affected by Ascochyta blight (Mycosphaerella pinodes) and a root rot. Overall 19 active ingredients were applied of which fungicide Mancozeb (WHO class table 5) and insecticide Carbofuran (WHO Class 1B) were applied the most. Approved IPM methods are advised to reduce pesticide use. For tree tomatoes regular cutting of branches infected with F. solani and regular collection and disposal of infected fruits with Anthracnosis are advised. For potatoes plastic barriers around the fields prevent the Andean potato weevil from laying eggs thus reducing infestation with the larvae in the tubers. Local bioinsecticide “Biol” seems effective and without harm to the environment, although not used by many farmers. Organic fertilization promises to restore decreasing soil fertility, water holding capacity and reduce erosion. The here presented alternatives and strategies to reduce pesticide use pose an opportunity to preserve the water resources of the region.
Resumo:
Facing the double menace of climate change threats and water crisis, poor communities have now encountered ever more severe challenges in ensuring agricultural productivity and food security. Communities hence have to manage these challenges by adopting a comprehensive approach that not only enhances water resource management, but also adapts agricultural activities to climate variability. Implemented by the Global Environment Facility’s Small Grants Programme, the Community Water Initiative (CWI) has adopted a distinctive approach to support demand-driven, innovative, low cost and community-based water resource management for food security. Experiences from CWI showed that a comprehensive, locally adapted approach that integrates water resources management, poverty reduction, climate adaptation and community empowerment provides a good model for sustainable development in poor rural areas.
Resumo:
The research of this thesis dissertation covers developments and applications of short-and long-term climate predictions. The short-term prediction emphasizes monthly and seasonal climate, i.e. forecasting from up to the next month over a season to up to a year or so. The long-term predictions pertain to the analysis of inter-annual- and decadal climate variations over the whole 21st century. These two climate prediction methods are validated and applied in the study area, namely, Khlong Yai (KY) water basin located in the eastern seaboard of Thailand which is a major industrial zone of the country and which has been suffering from severe drought and water shortage in recent years. Since water resources are essential for the further industrial development in this region, a thorough analysis of the potential climate change with its subsequent impact on the water supply in the area is at the heart of this thesis research. The short-term forecast of the next-season climate, such as temperatures and rainfall, offers a potential general guideline for water management and reservoir operation. To that avail, statistical models based on autoregressive techniques, i.e., AR-, ARIMA- and ARIMAex-, which includes additional external regressors, and multiple linear regression- (MLR) models, are developed and applied in the study region. Teleconnections between ocean states and the local climate are investigated and used as extra external predictors in the ARIMAex- and the MLR-model and shown to enhance the accuracy of the short-term predictions significantly. However, as the ocean state – local climate teleconnective relationships provide only a one- to four-month ahead lead time, the ocean state indices can support only a one-season-ahead forecast. Hence, GCM- climate predictors are also suggested as an additional predictor-set for a more reliable and somewhat longer short-term forecast. For the preparation of “pre-warning” information for up-coming possible future climate change with potential adverse hydrological impacts in the study region, the long-term climate prediction methodology is applied. The latter is based on the downscaling of climate predictions from several single- and multi-domain GCMs, using the two well-known downscaling methods SDSM and LARS-WG and a newly developed MLR-downscaling technique that allows the incorporation of a multitude of monthly or daily climate predictors from one- or several (multi-domain) parent GCMs. The numerous downscaling experiments indicate that the MLR- method is more accurate than SDSM and LARS-WG in predicting the recent past 20th-century (1971-2000) long-term monthly climate in the region. The MLR-model is, consequently, then employed to downscale 21st-century GCM- climate predictions under SRES-scenarios A1B, A2 and B1. However, since the hydrological watershed model requires daily-scale climate input data, a new stochastic daily climate generator is developed to rescale monthly observed or predicted climate series to daily series, while adhering to the statistical and geospatial distributional attributes of observed (past) daily climate series in the calibration phase. Employing this daily climate generator, 30 realizations of future daily climate series from downscaled monthly GCM-climate predictor sets are produced and used as input in the SWAT- distributed watershed model, to simulate future streamflow and other hydrological water budget components in the study region in a multi-realization manner. In addition to a general examination of the future changes of the hydrological regime in the KY-basin, potential future changes of the water budgets of three main reservoirs in the basin are analysed, as these are a major source of water supply in the study region. The results of the long-term 21st-century downscaled climate predictions provide evidence that, compared with the past 20th-reference period, the future climate in the study area will be more extreme, particularly, for SRES A1B. Thus, the temperatures will be higher and exhibit larger fluctuations. Although the future intensity of the rainfall is nearly constant, its spatial distribution across the region is partially changing. There is further evidence that the sequential rainfall occurrence will be decreased, so that short periods of high intensities will be followed by longer dry spells. This change in the sequential rainfall pattern will also lead to seasonal reductions of the streamflow and seasonal changes (decreases) of the water storage in the reservoirs. In any case, these predicted future climate changes with their hydrological impacts should encourage water planner and policy makers to develop adaptation strategies to properly handle the future water supply in this area, following the guidelines suggested in this study.
Resumo:
The Upper Blue Nile River Basin (UBNRB) located in the western part of Ethiopia, between 7° 45’ and 12° 45’N and 34° 05’ and 39° 45’E has a total area of 174962 km2 . More than 80% of the population in the basin is engaged in agricultural activities. Because of the particularly dry climate in the basin, likewise to most other regions of Ethiopia, the agricultural productivity depends to a very large extent on the occurrence of the seasonal rains. This situation makes agriculture highly vulnerable to the impact of potential climate hazards which are about to inflict Africa as a whole and Ethiopia in particular. To analyze these possible impacts of future climate change on the water resources in the UBNRB, in the first part of the thesis climate projection for precipitation, minimum and maximum temperatures in the basin, using downscaled predictors from three GCMs (ECHAM5, GFDL21 and CSIRO-MK3) under SRES scenarios A1B and A2 have been carried out. The two statistical downscaling models used are SDSM and LARS-WG, whereby SDSM is used to downscale ECHAM5-predictors alone and LARS-WG is applied in both mono-model mode with predictors from ECHAM5 and in multi-model mode with combined predictors from ECHAM5, GFDL21 and CSIRO-MK3. For the calibration/validation of the downscaled models, observed as well as NCEP climate data in the 1970 - 2000 reference period is used. The future projections are made for two time periods; 2046-2065 (2050s) and 2081-2100 (2090s). For the 2050s future time period the downscaled climate predictions indicate rise of 0.6°C to 2.7°C for the seasonal maximum temperatures Tmax, and of 0.5°C to 2.44°C for the minimum temperatures Tmin. Similarly, during the 2090s the seasonal Tmax increases by 0.9°C to 4.63°C and Tmin by 1°C to 4.6°C, whereby these increases are generally higher for the A2 than for the A1B scenario. For most sub-basins of the UBNRB, the predicted changes of Tmin are larger than those of Tmax. Meanwhile, for the precipitation, both downscaling tools predict large changes which, depending on the GCM employed, are such that the spring and summer seasons will be experiencing decreases between -36% to 1% and the autumn and winter seasons an increase of -8% to 126% for the two future time periods, regardless of the SRES scenario used. In the second part of the thesis the semi-distributed, physically based hydrologic model, SWAT (Soil Water Assessment Tool), is used to evaluate the impacts of the above-predicted future climate change on the hydrology and water resources of the UBNRB. Hereby the downscaled future predictors are used as input in the SWAT model to predict streamflow of the Upper Blue Nile as well as other relevant water resources parameter in the basin. Calibration and validation of the streamflow model is done again on 1970-2000 measured discharge at the outlet gage station Eldiem, whereby the most sensitive out the numerous “tuneable” calibration parameters in SWAT have been selected by means of a sophisticated sensitivity analysis. Consequently, a good calibration/validation model performance with a high NSE-coefficient of 0.89 is obtained. The results of the future simulations of streamflow in the basin, using both SDSM- and LARS-WG downscaled output in SWAT reveal a decline of -10% to -61% of the future Blue Nile streamflow, And, expectedly, these obviously adverse effects on the future UBNRB-water availibiliy are more exacerbated for the 2090’s than for the 2050’s, regardless of the SRES.
Resumo:
For over 1,000 years, the Balinese have developed a unique system of democratic and sustainable water irrigation. It has shaped the cultural landscapes of Bali and enables local communities to manage the ecology of terraced rice fields at the scale of whole watersheds. The Subak system has made the Balinese the most productive rice growers in Indonesia and ensures a high level of food sovereignty for a dense population on the volcanic island. The Subak system provides a vibrant example of a diverse, ecologically sustainable, economically productive and democratic water management system that is also characterized by its nonreliance on fossil fuel derivatives or heavy machinery. In 2012, UNESCO has recognized five rice terraces and their water temples as World Heritage site and supports its conservation and protection. However, the fragile Subak system is threatened for its complexity and interconnectedness by new agricultural practices and increasing tourism on the island.
Resumo:
Diese Arbeit beschäftigt sich mit nicht in Rechnung stellbaren Wasserverlusten in städtischen Versorgungsnetzen in Entwicklungsländern. Es soll das Wissen über diese Verluste erweitert und aufgezeigt werden, ob diese auf ein ökonomisch vertretbares Maß reduziert werden können. Die vorliegende Doktorarbeit untersucht solche unberechneten Wasserverluste und versucht, neben der Quantifizierung von Leckagen auch Entscheidungswerkzeuge für ein verbessertes Management der Versorgungsnetze in Entwicklungsländern zu erarbeiten. Als Fallstudie dient Harare, die Hauptstadt von Simbabwe. Wasserverluste in Verteilungsnetzen sind unvermeidbar, sollten aber auf ein ökonomisch tragbares Niveau reduziert werden, wenn ein nachhaltiger Betrieb erreicht werden soll. Wasserverluste können sowohl durch illegale und ungenehmigte Anschlüsse oder durch Undichtigkeiten im Verteilnetz, als auch durch mangelhafte Mess- und Berechnungssysteme entstehen. Es sind bereits viele Ansätze zur Verringerung von Verlusten in Wasserverteilsystemen bekannt geworden, entsprechend existieren dazu auch zahlreiche Methoden und Werkzeuge. Diese reichen von computergestützten Verfahren über gesetzliche und politische Vorgaben sowie ökonomische Berechnungen bis hin zu Maßnahmen der Modernisierung der Infrastruktur. Der Erfolg dieser Anstrengungen ist abhängig von der Umsetzbarkeit und dem Umfeld, in dem diese Maßnahmen durchgeführt werden. Die Bewertung der Arbeitsgüte einer jeden Wasserversorgungseinheit basiert auf der Effektivität des jeweiligen Verteilungssystems. Leistungs- und Bewertungszahlen sind die meist genutzten Ansätze, um Wasserverteilsysteme und ihre Effizienz einzustufen. Weltweit haben sich zur Bewertung als Indikatoren die finanzielle und die technische Leistungsfähigkeit durchgesetzt. Die eigene Untersuchung zeigt, dass diese Indikatoren in vielen Wasserversorgungssystemen der Entwicklungsländer nicht zur Einführung von Verlust reduzierenden Managementstrategien geführt haben. Viele durchgeführte Studien über die Einführung von Maßnahmen zur Verlustreduzierung beachten nur das gesamte nicht in Rechnung stellbare Wasser, ohne aber den Anteil der Leckagen an der Gesamthöhe zu bestimmen. Damit ist keine Aussage über die tatsächliche Zuordnung der Verluste möglich. Aus diesem Grund ist ein Bewertungsinstrument notwendig, mit dem die Verluste den verschiedenen Ursachen zugeordnet werden können. Ein solches Rechenwerkzeug ist das South African Night Flow Analysis Model (SANFLOW) der südafrikanischen Wasser-Forschungskommission, das Untersuchungen von Wasserdurchfluss und Anlagendruck in einzelnen Verteilbezirken ermöglicht. In der vorliegenden Arbeit konnte nachgewiesen werden, dass das SANFLOW-Modell gut zur Bestimmung des Leckageanteiles verwendet werden kann. Daraus kann gefolgert werden, dass dieses Modell ein geeignetes und gut anpassbares Analysewerkzeug für Entwicklungsländer ist. Solche computergestützte Berechnungsansätze können zur Bestimmung von Leckagen in Wasserverteilungsnetzen eingesetzt werden. Eine weitere Möglichkeit ist der Einsatz von Künstlichen Neuronalen Netzen (Artificial Neural Network – ANN), die trainiert und dann zur Vorhersage der dynamischen Verhältnisse in Wasserversorgungssystemen genutzt werden können. Diese Werte können mit der Wassernachfrage eines definierten Bezirks verglichen werden. Zur Untersuchung wurde ein Mehrschichtiges Künstliches Neuronales Netz mit Fehlerrückführung zur Modellierung des Wasserflusses in einem überwachten Abschnitt eingesetzt. Zur Bestimmung des Wasserbedarfes wurde ein MATLAB Algorithmus entwickelt. Aus der Differenz der aktuellen und des simulierten Wassernachfrage konnte die Leckagerate des Wasserversorgungssystems ermittelt werden. Es konnte gezeigt werden, dass mit dem angelernten Neuronalen Netzwerk eine Vorhersage des Wasserflusses mit einer Genauigkeit von 99% möglich ist. Daraus lässt sich die Eignung von ANNs als flexibler und wirkungsvoller Ansatz zur Leckagedetektion in der Wasserversorgung ableiten. Die Untersuchung zeigte weiterhin, dass im Versorgungsnetz von Harare 36 % des eingespeisten Wassers verloren geht. Davon wiederum sind 33 % auf Leckagen zurückzuführen. Umgerechnet bedeutet dies einen finanziellen Verlust von monatlich 1 Millionen Dollar, was 20 % der Gesamteinnahmen der Stadt entspricht. Der Stadtverwaltung von Harare wird daher empfohlen, aktiv an der Beseitigung der Leckagen zu arbeiten, da diese hohen Verluste den Versorgungsbetrieb negativ beeinflussen. Abschließend wird in der Arbeit ein integriertes Leckage-Managementsystem vorgeschlagen, das den Wasserversorgern eine Entscheidungshilfe bei zu ergreifenden Maßnahmen zur Instandhaltung des Verteilnetzes geben soll.
Resumo:
Investing in global environmental and adaptation benefits in the context of agriculture and food security initiatives can play an important role in promoting sustainable intensification. This is a priority for the Global Environment Facility (GEF), created in 1992 with a mandate to serve as financial mechanism of several multilateral environmental agreements. To demonstrate the nature and extent of GEF financing, we conducted an assessment of the entire portfolio over a period of two decades (1991–2011) to identify projects with direct links to agriculture and food security. A cohort of 192 projects and programs were identified and used as a basis for analyzing trends in GEF financing. The projects and programs together accounted for a total GEF financing of US$1,086.8 million, and attracted an additional US$6,343.5 million from other sources. The value-added of GEF financing for ecosystem services and resilience in production systems was demonstrated through a diversity of interventions in the projects and programs that utilized US$810.6 million of the total financing. The interventions fall into the following four main categories in accordance with priorities of the GEF: sustainable land management (US$179.3 million), management of agrobiodiversity (US$113.4 million), sustainable fisheries and water resource management (US$379.8 million), and climate change adaptation (US$138.1 million). By aligning GEF priorities with global aspirations for sustainable intensification of production systems, the study shows that it is possible to help developing countries tackle food insecurity while generating global environmental benefits for a healthy and resilient planet.