5 resultados para visual data analysis
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
In this paper, we discuss Conceptual Knowledge Discovery in Databases (CKDD) in its connection with Data Analysis. Our approach is based on Formal Concept Analysis, a mathematical theory which has been developed and proven useful during the last 20 years. Formal Concept Analysis has led to a theory of conceptual information systems which has been applied by using the management system TOSCANA in a wide range of domains. In this paper, we use such an application in database marketing to demonstrate how methods and procedures of CKDD can be applied in Data Analysis. In particular, we show the interplay and integration of data mining and data analysis techniques based on Formal Concept Analysis. The main concern of this paper is to explain how the transition from data to knowledge can be supported by a TOSCANA system. To clarify the transition steps we discuss their correspondence to the five levels of knowledge representation established by R. Brachman and to the steps of empirically grounded theory building proposed by A. Strauss and J. Corbin.
Resumo:
While most data analysis and decision support tools use numerical aspects of the data, Conceptual Information Systems focus on their conceptual structure. This paper discusses how both approaches can be combined.
Resumo:
The measurement of feed intake, feeding time and rumination time, summarized by the term feeding behavior, are helpful indicators for early recognition of animals which show deviations in their behavior. The overall objective of this work was the development of an early warning system for inadequate feeding rations and digestive and metabolic disorders, which prevention constitutes the basis for health, performance, and reproduction. In a literature review, the current state of the art and the suitability of different measurement tools to determine feeding behavior of ruminants was discussed. Five measurement methods based on different methodological approaches (visual observance, pressure transducer, electrical switches, electrical deformation sensors and acoustic biotelemetry), and three selected measurement techniques (the IGER Behavior Recorder, the Hi-Tag rumination monitoring system and RumiWatchSystem) were described, assessed and compared to each other within this review. In the second study, the new system for measuring feeding behavior of dairy cows was evaluated. The measurement of feeding behavior ensues through electromyography (EMG). For validation, the feeding behavior of 14 cows was determined by both the EMG system and by visual observation. The high correlation coefficients indicate that the current system is a reliable and suitable tool for monitoring the feeding behavior of dairy cows. The aim of a further study was to compare the DairyCheck (DC) system and two additional measurement systems for measuring rumination behavior in relation to efficiency, reliability and reproducibility, with respect to each other. The two additional systems were labeled as the Lely Qwes HR (HR) sensor, and the RumiWatchSystem (RW). Results of accordance of RW and DC to each other were high. The last study examined whether rumination time (RT) is affected by the onset of calving and if it might be a useful indicator for the prediction of imminent birth. Data analysis referred to the final 72h before the onset of calving, which were divided into twelve 6h-blocks. The results showed that RT was significantly reduced in the final 6h before imminent birth.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.
Resumo:
Syria has been a major producer and exporter of fresh fruit and vegetables (FFV) in the Arabic region. Prior to 2011, Syrian FFV were mainly exported to the neighbouring countries, the Gulf States and Northern Africa as well as to Eastern European countries. Although the EU is potentially one of the most profitable markets of high quality FFV (such as organic ones) in the world, Syrian exports of FFV to Western European countries like Germany have been small. It could be a lucrative opportunity for Syrian growers and exporters of FFV to export organic products to markets such as Germany, where national production is limited to a few months due to climatic conditions. Yet, the organic sector in Syria is comparatively young and only a very small area of FFV is certified according to EU organic regulations. Up to the author’s knowledge, little was known about Syrian farmers’ attitudes towards organic FFV production. There was also no study so far that explored and analysed the determining factors for organic FFV adoption among Syrian farmers as well as the exports of these products to the EU markets. The overarching aim of the present dissertation focused on exploring and identifying the market potential of Syrian exports of organic FFV to Germany. The dissertation was therefore concerned with three main objectives: (i) to explore if German importers and wholesalers of organic FFV see market opportunities for Syrian organic products and what requirements in terms of quality and quantity they have, (ii) to determine the obstacles Syrian producers and exporters face when exporting agricultural products to Germany, and (iii) to investigate whether Syrian farmers of FFV can imagine converting their farms to organic production as well as the underlying reasons why they do so or not. A twofold methodological approach with expert interviews and a farmer survey were used in this dissertation to address the abovementioned objectives. While expert interviews were conducted with German and Syrian wholesalers of (organic) FFV in 2011 (9 interviews each), the farmer survey was administrated with 266 Syrian farmers of FFV in the main region for the production of FFV (i.e. the coastal region) from November 2012 till May 2013. For modelling farmers’ decisions to adopt organic farming, the Theory of Planned Behaviour as theoretical framework and Partial Least Squares Structural Equation Modelling as the main method for data analysis were used in this study. The findings of this dissertation yield implications for the different stakeholders (governmental institutions and NGOs, farmers, exporters, wholesalers, etc.) who are interested in prompting the Syrian export of organic products. Based on the empirical results and a literature review, an action plan to promote Syrian production and export of organic products was developed which can help in the post-war period in Syria at improving the organic sector.