2 resultados para urine retention
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The fertiliser value of human urine has been examined on several crops, yet little is known about its effects on key soil properties of agronomic significance. This study investigated temporal soil salinization potential of human urine fertiliser (HUF). It further looked at combined effects of human urine and wood ash (WA) on soil pH, urine-NH_3 volatilisation, soil electrical conductivity (EC), and basic cation contents of two Acrisols (Adenta and Toje series) from the coastal savannah zone of Ghana. The experiment was a factorial design conducted in the laboratory for 12 weeks. The results indicated an increase in soil pH by 1.2 units for Adenta series and 1 unit for Toje series after one week of HUF application followed by a decline by about 2 pH units for both soil types after twelve weeks. This was attributed to nitrification of ammonium to nitrate leading to acidification. The EC otherwise increased with HUF application creating slightly saline conditions in Toje series and non-saline conditions in Adenta series. When WA was applied with HUF, both soil pH and EC increased. In contrast, the HUF alone slightly salinized Toje series, but both soils remained non-saline whenWA and HUF were applied together. The application ofWA resulted in two-fold increase in Ca, Mg, K, and Na content compared to HUF alone. Hence, WA is a promising amendment of acid soils and could reduce the effect of soluble salts in human urine fertilizer, which is likely to cause soil salinity.
Resumo:
This research quantitatively evaluates the water retention capacity and flood control function of the forest catchments by using hydrological data of the large flood events which happened after the serious droughts. The objective sites are the Oodo Dam and the Sameura Dam catchments in Japan. The kinematic wave model, which considers saturated and unsaturated sub-surface soil zones, is used for the rainfall-runoff analysis. The result shows that possible storage volume of the Oodo Dam catchment is 162.26 MCM in 2005, while that of Samerua is 102.83 MCM in 2005 and 102.64 MCM in 2007. Flood control function of the Oodo Dam catchment is 173 mm in water depth in 2005, while the Sameura Dam catchment 114 mm in 2005 and 126 mm in 2007. This indicates that the Oodo Dam catchment has more than twice as big water capacity as its capacity (78.4 mm), while the Sameura Dam catchment has about one-fifth of the its storage capacity (693 mm).