3 resultados para untreated

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presented thesis considered three different system approach topics to ensure yield and plant health in organically grown potatoes and tomatoes. The first topic describes interactions between late blight (Phytophthora infestans) incidence and soil nitrogen supply on yield in organic potato farming focussing in detail on the yield loss relationship of late blight based on results of several field trials. The interactive effects of soil N-supply, climatic conditions and late blight on the yield were studied in the presence and absence of copper fungicides from 2002-2004 for the potato cultivar Nicola. Under conditions of central Germany the use of copper significantly reduced late blight in almost all cases (15-30 %). However, the reductions in disease through copper application did not result in statistically significant yield increases (+0 – +10 %). Subsequently, only 30 % of the variation in yield could be attributed to disease reductions. A multiple regression model (R²Max), however, including disease reduction, growth duration and temperature sum from planting until 60 % disease severity was reached and soil mineral N contents 10 days after emergence could explain 75 % of the observed variations in yield. The second topic describes the effect of some selected organic fertilisers and biostimulant products on nitrogen-mineralization and efficiency, yield and diseases in organic potato and tomato trials. The organic fertilisers Biofeed Basis (BFB, plant derived, AgroBioProducts, Wageningen, Netherlands) and BioIlsa 12,5 Export (physically hydrolysed leather shavings, hair and skin of animals; ILSA, Arizignano, Italy) and two biostimulant products BioFeed Quality (BFQ, multi-compound seaweed extract, AgroBioProducts) and AUSMA (aqueous pine and spruce needle extract, A/S BIOLAT, Latvia), were tested. Both fertilisers supplied considerable amounts of nitrogen during the main uptake phases of the crops and reached yields as high or higher as compared to the control with horn meal fertilisation. The N-efficiency of the tested fertilisers in potatoes ranged from 90 to 159 kg yield*kg-1 N – input. Most effective with tomatoes were the combined treatments of fertiliser BFB and the biostimulants AUSMA and BFQ. Both biostimulants significantly increased the share of healthy fruit and/or the number of fruits. BFQ significantly increased potato yields (+6 %) in one out of two years and reduced R. solani-infestation in the potatoes. This suggests that the biostimulants had effects on plant metabolism and resistance properties. However, no effects of biostimulants on potato late blight could be observed in the fields. The third topic focused on the effect of suppressive composts and seed tuber health on the saprophytic pathogen Rhizoctonia solani in organic potato systems. In the present study 5t ha-1 DM of a yard and bio-waste (60/40) compost produced in a 5 month composting process and a 15 month old 100 % yard waste compost were used to assess the effects on potato infection with R. solani when applying composts within the limits allowed. Across the differences in initial seed tuber infestation and 12 cultivars 5t DM ha-1 of high quality composts, applied in the seed tuber area, reduced the infestation of harvested potatoes with black scurf, tuber malformations and dry core tubers by 20 to 84 %, 20 to 49 % and 38 to 54 %, respectively, while marketable yields were increased by 5 to 25 % due to lower rates of wastes after sorting (marketable yield is gross yield minus malformed tubers, tubers with dry core, tubers with black scurf > 15% infested skin). The rate of initial black scurf infection of the seed tubers also affected tuber number, health and quality significantly. Compared to healthy seed tubers initial black scurf sclerotia infestation of 2-5 and >10 % of tuber surface led in untreated plots to a decrease in marketable yields by 14-19 and 44-66 %, a increase of black scurf severity by 8-40 and 34-86 % and also increased the amount of malformed and dry core tubers by 32-57 and 109-214 %.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy production from biomass and the conservation of ecologically valuable grassland habitats are two important issues of agriculture today. The combination of a bioenergy production, which minimises environmental impacts and competition with food production for land with a conversion of semi-natural grasslands through new utilization alternatives for the biomass, led to the development of the IFBB process. Its basic principle is the separation of biomass into a liquid fraction (press fluid, PF) for the production of electric and thermal energy after anaerobic digestion to biogas and a solid fraction (press cake, PC) for the production of thermal energy through combustion. This study was undertaken to explore mass and energy flows as well as quality aspects of energy carriers within the IFBB process and determine their dependency on biomass-related and technical parameters. Two experiments were conducted, in which biomass from semi-natural grassland was conserved as silage and subjected to a hydrothermal conditioning and a subsequent mechanical dehydration with a screw press. Methane yield of the PF and the untreated silage was determined in anaerobic digestion experiments in batch fermenters at 37°C with a fermentation time of 13-15 and 27-35 days for the PF and the silage, respectively. Concentrations of dry matter (DM), ash, crude protein (CP), crude fibre (CF), ether extract (EE), neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent ligning (ADL) and elements (K, Mg, Ca, Cl, N, S, P, C, H, N) were determined in the untreated biomass and the PC. Higher heating value (HHV) and ash softening temperature (AST) were calculated based on elemental concentration. Chemical composition of the PF and mass flows of all plant compounds into the PF were calculated. In the first experiment, biomass from five different semi-natural grassland swards (Arrhenaterion I and II, Caricion fuscae, Filipendulion ulmariae, Polygono-Trisetion) was harvested at one late sampling (19 July or 31 August) and ensiled. Each silage was subjected to three different temperature treatments (5°C, 60°C, 80°C) during hydrothermal conditioning. Based on observed methane yields and HHV as energy output parameters as well as literature-based and observed energy input parameters, energy and green house gas (GHG) balances were calculated for IFBB and two reference conversion processes, whole-crop digestion of untreated silage (WCD) and combustion of hay (CH). In the second experiment, biomass from one single semi-natural grassland sward (Arrhenaterion) was harvested at eight consecutive dates (27/04, 02/05, 09/05, 16/05, 24/05, 31/05, 11/06, 21/06) and ensiled. Each silage was subjected to six different treatments (no hydrothermal conditioning and hydrothermal conditioning at 10°C, 30°C, 50°C, 70°C, 90°C). Energy balance was calculated for IFBB and WCD. Multiple regression models were developed to predict mass flows, concentrations of elements in the PC, concentration of organic compounds in the PF and energy conversion efficiency of the IFBB process from temperature of hydrothermal conditioning as well as NDF and DM concentration in the silage. Results showed a relative reduction of ash and all elements detrimental for combustion in the PC compared to the untreated biomass of 20-90%. Reduction was highest for K and Cl and lowest for N. HHV of PC and untreated biomass were in a comparable range (17.8-19.5 MJ kg-1 DM), but AST of PC was higher (1156-1254°C). Methane yields of PF were higher compared to those of WCD when the biomass was harvested late (end of May and later) and in a comparable range when the biomass was harvested early and ranged from 332 to 458 LN kg-1 VS. Regarding energy and GHG balances, IFBB, with a net energy yield of 11.9-14.1 MWh ha-1, a conversion efficiency of 0.43-0.51, and GHG mitigation of 3.6-4.4 t CO2eq ha-1, performed better than WCD, but worse than CH. WCD produces thermal and electric energy with low efficiency, CH produces only thermal energy with a low quality solid fuel with high efficiency, IFBB produces thermal and electric energy with a solid fuel of high quality with medium efficiency. Regression models were able to predict target parameters with high accuracy (R2=0.70-0.99). The influence of increasing temperature of hydrothermal conditioning was an increase of mass flows, a decrease of element concentrations in the PC and a differing effect on energy conversion efficiency. The influence of increasing NDF concentration of the silage was a differing effect on mass flows, a decrease of element concentrations in the PC and an increase of energy conversion efficiency. The influence of increasing DM concentration of the silage was a decrease of mass flows, an increase of element concentrations in the PC and an increase of energy conversion efficiency. Based on the models an optimised IFBB process would be obtained with a medium temperature of hydrothermal conditioning (50°C), high NDF concentrations in the silage and medium DM concentrations of the silage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The overall aim of the work presented was to evaluate soil health management with a specific focus on soil borne diseases of peas. For that purpose field experiments were carried out from 2009 until 2013 to assess crop performance and pathogen occurrence in the rotation winter pea-maize-winter wheat and if the application of composts can improve system performance. The winter peas were left untreated or inoculated with Phoma medicaginis, in the presence or absence of yard waste compost at rate of 5 t dry matter ha-1. A second application of compost was made to the winter wheat. Fusarium ssp. were isolated and identified from the roots of all three crops and the Ascochyta complex pathogens on peas. Bioassays were conducted under controlled conditions to assess susceptibility of two peas to Fusarium avenaceum, F. solani, P. medicaginis and Didymella pinodes and of nine plant species to F. avenaceum. Also, effects of compost applications and temperature on pea diseases were assessed. Application of composts overall stabilized crop performance but it did not lead to significant yield increases nor did it affect pathogen composition and occurrence. Phoma medicaginis was dominating the pathogen complex on peas. F. graminearum, F. culmorum, F. proliferatum, Microdochium nivale, F. crookwellense, F. sambucinum, F. oxysporum, F. avenaceum and F. equiseti were frequently isolated species from maize and winter wheat with no obvious influence of the pre-crop on the Fusarium species composition. The spring pea Santana was considerably more susceptible to the pathogens tested than the winter pea EFB33 in both sterile sand and non-sterilized field soil. F. avenaceum was the most aggressive pathogen, followed by P. medicaginis, D. pinodes, and F. solani. Aggressiveness of all pathogens was greatly reduced in non-sterile field soil. F. avenaceum caused severe symptoms on roots of all nine plant species tested. Especially susceptible were Trifolium repens, T. subterraneum, Brassica juncea and Sinapis alba in addition to peas. Reduction of growing temperatures from 19/16°C day/night to 16/12°C and 13/10°C did not affect the efficacy of compost. It reduced plant growth and slightly increased disease on EFB33 whereas the highest disease severity on Santana was observed at the highest temperature, 19/16°C. Application of 20% v/v of compost reduced disease on peas due to all four pathogens depending on pea variety, pathogen and growing media used. Suppression was also achieved with lower application rate of 3.5% v/v. Tests with γ sterilized compost suggest that the suppression of disease caused by Fusarium spp. is biological in origin, whereas chemical and physical properties of compost are playing an additional role in the suppression of disease caused by D. pinodes and P. medicaginis.