11 resultados para transfer pricing principles

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gestaltpädagogische Elemente in der Berufspädagogik Potentielle Erträge gestaltpädagogischer Ansätze für die berufliche Bildung - Konzepte, Fundierung, Realisierungsformen - Zusammenfassung: Berufsausbilder, Berufsschullehrer und Trainer in der Aus- und Weiterbildung werden heute mit vielfältigen Veränderungen konfrontiert. Aufgrund des Technikeinsatzes zeigt sich in vie-len Unternehmen ein Wandel der beruflich organisierten Arbeit. Die wirtschaftlichen, techni-schen und sozialen Systemzusammenhänge werden zunehmend komplexer, dynamischer, enger vernetzt und normativ unbestimmter. Die technologische Entwicklung, vor allem der Kommunikationsmedien, hat eine Temposteigerung der Informationsübermittlung zur Folge, die gleichzeitig das Wissen erhöht. Mit der Forderung nach Schlüsselqualifikationen und der Wiederentdeckung ganzheitlicher Arbeitssituationen ist das Bestreben nach Bildungskonzep-ten verbunden, die mit der Herausbildung von Kompetenzen, wie vernetztes, system- und handlungsbezogenes Denken in komplexen Kontexten, Abstraktionsvermögen, systemati-sches Verständnis von Organisationsinterdependenzen, Selbstständigkeit, Selbstverantwor-tung, soziale, methodische und kommunikative Kompetenz und Innovationskraft korrespon-dieren. Unter dem Blickwinkel der Gestaltpädagogik fällt auf, dass die Berufspädagogik Methoden und Techniken in der betrieblichen Aus- und Weiterbildung nutzt, die wesentliche Elemente der Gestaltpädagogik enthalten. Eine konkrete theoretische Fundierung und Einbettung in die Berufspädagogik fehlt jedoch bisher. Die primäre Zielsetzung der Arbeit ist, die theoretischen Grundlagen der Gestaltpädagogik herauszuarbeiten und sie mit der Berufspädagogik in Verbindung zu bringen. An Beispielen wird aufgezeigt, wie gestaltpädagogische Aspekte in die betriebliche Aus- und Weiterbildung einfließen. Dabei werden unter anderem auch die Grenzen und Potentiale der Gestaltpädago-gik für die Berufspädagogik betrachtet. Die theoretische und praktische Relevanz der Arbeit ergibt sich daraus, dass erstmals berufs-pädagogische Vorgehensweisen der Praxis im Hinblick auf gestaltpädagogische Aspekte un-tersucht wurden. Die wesentlichen Forschungsergebnisse dieser Arbeit lassen sich wie folgt zusammenfassen: In der betrieblichen Aus- und Weiterbildung kommen Methoden und Vorgehensweisen zum Einsatz, die oberflächlich betrachtet gestaltpädagogischen Charakter haben. Jedoch werden die gestaltpädagogischen Grundgedanken, wie z.B. eine ganzheitlich umfassende Persönlich-keitsentwicklung, persönlich bedeutsames Lernen, Förderung der sozialen Interaktionsfähig-keit oder die Förderung der Autonomie in der betrieblichen Bildungsarbeit auf ein Minimum reduziert. Die gestaltpädagogischen Methoden und Vorgehensweisen werden überwiegend auf ökonomische Zwecke hin ausgerichtet und funktionalisiert eingesetzt. Man kann sagen, dass sich die betriebliche Praxis mit der Aneinanderreihung von kreativen Übungen zufrieden gibt, und eine Tendenz zu erlebnisaktivierenden Vorgehensweisen zu erkennen ist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the occupation of the single particle levels on the impact parameter dependent K - K charge transfer occuring in collisions of 90 keV Ne{^9+} on Ne was studied using coupled channel calculations. The energy eigenvalues and matrixelements for the single particle levels were taken from ab initio self consistent MO-LCAO-DIRAC-FOCK-SLATER calculations with occupation numbers corresponding to the single particle amplitudes given by the coupled channel calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the single-particle amplitudes from a 20-level coupled-channel calculation with ab initio relativistic self consistent LCAO-MO Dirac-Fock-Slater energy eigenvalues and matrix elements we calculate within the frame of the inclusive probability formalism impact-parameter-dependent K-hole transfer probabilities. As an example we show results for the heavy asymmetric collision system S{^15+} on Ar for impact energies from 4.7 to 16 MeV. The inclusive probability formalism which reinstates the many-particle aspect of the collision system permits a qualitative and quantitative agreement with the experiment which is not achieved by the single-particle picture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The doubly excited 2s2p ^1P_1 level of Kr^{34+} populated via resonant transfer and excitation (RTE) feeds selectively the metastable ls2s ^1 S_0 state which can only decay via simultaneous emission of two photons to the ground state 1s^2 ^1 S_0. X-ray/X-ray coincidence measurements in heavy ionatom collisions enable the direct measurement of the spectral distribution of the two-photon decay in He-like ions. In addition, we observe strong photon cascades indueed by radiative electron capture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the vision of Mark Weiser on ubiquitous computing, computers are disappearing from the focus of the users and are seamlessly interacting with other computers and users in order to provide information and services. This shift of computers away from direct computer interaction requires another way of applications to interact without bothering the user. Context is the information which can be used to characterize the situation of persons, locations, or other objects relevant for the applications. Context-aware applications are capable of monitoring and exploiting knowledge about external operating conditions. These applications can adapt their behaviour based on the retrieved information and thus to replace (at least a certain amount) the missing user interactions. Context awareness can be assumed to be an important ingredient for applications in ubiquitous computing environments. However, context management in ubiquitous computing environments must reflect the specific characteristics of these environments, for example distribution, mobility, resource-constrained devices, and heterogeneity of context sources. Modern mobile devices are equipped with fast processors, sufficient memory, and with several sensors, like Global Positioning System (GPS) sensor, light sensor, or accelerometer. Since many applications in ubiquitous computing environments can exploit context information for enhancing their service to the user, these devices are highly useful for context-aware applications in ubiquitous computing environments. Additionally, context reasoners and external context providers can be incorporated. It is possible that several context sensors, reasoners and context providers offer the same type of information. However, the information providers can differ in quality levels (e.g. accuracy), representations (e.g. position represented in coordinates and as an address) of the offered information, and costs (like battery consumption) for providing the information. In order to simplify the development of context-aware applications, the developers should be able to transparently access context information without bothering with underlying context accessing techniques and distribution aspects. They should rather be able to express which kind of information they require, which quality criteria this information should fulfil, and how much the provision of this information should cost (not only monetary cost but also energy or performance usage). For this purpose, application developers as well as developers of context providers need a common language and vocabulary to specify which information they require respectively they provide. These descriptions respectively criteria have to be matched. For a matching of these descriptions, it is likely that a transformation of the provided information is needed to fulfil the criteria of the context-aware application. As it is possible that more than one provider fulfils the criteria, a selection process is required. In this process the system has to trade off the provided quality of context and required costs of the context provider against the quality of context requested by the context consumer. This selection allows to turn on context sources only if required. Explicitly selecting context services and thereby dynamically activating and deactivating the local context provider has the advantage that also the resource consumption is reduced as especially unused context sensors are deactivated. One promising solution is a middleware providing appropriate support in consideration of the principles of service-oriented computing like loose coupling, abstraction, reusability, or discoverability of context providers. This allows us to abstract context sensors, context reasoners and also external context providers as context services. In this thesis we present our solution consisting of a context model and ontology, a context offer and query language, a comprehensive matching and mediation process and a selection service. Especially the matching and mediation process and the selection service differ from the existing works. The matching and mediation process allows an autonomous establishment of mediation processes in order to transfer information from an offered representation into a requested representation. In difference to other approaches, the selection service selects not only a service for a service request, it rather selects a set of services in order to fulfil all requests which also facilitates the sharing of services. The approach is extensively reviewed regarding the different requirements and a set of demonstrators shows its usability in real-world scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electronic theory is developed, which describes the ultrafast demagnetization in itinerant ferromagnets following the absorption of a femtosecond laser pulse. The present work intends to elucidate the microscopic physics of this ultrafast phenomenon by identifying its fundamental mechanisms. In particular, it aims to reveal the nature of the involved spin excitations and angular-momentum transfer between spin and lattice, which are still subjects of intensive debate. In the first preliminary part of the thesis the initial stage of the laser-induced demagnetization process is considered. In this stage the electronic system is highly excited by spin-conserving elementary excitations involved in the laser-pulse absorption, while the spin or magnon degrees of freedom remain very weakly excited. The role of electron-hole excitations on the stability of the magnetic order of one- and two-dimensional 3d transition metals (TMs) is investigated by using ab initio density-functional theory. The results show that the local magnetic moments are remarkably stable even at very high levels of local energy density and, therefore, indicate that these moments preserve their identity throughout the entire demagnetization process. In the second main part of the thesis a many-body theory is proposed, which takes into account these local magnetic moments and the local character of the involved spin excitations such as spin fluctuations from the very beginning. In this approach the relevant valence 3d and 4p electrons are described in terms of a multiband model Hamiltonian which includes Coulomb interactions, interatomic hybridizations, spin-orbit interactions, as well as the coupling to the time-dependent laser field on the same footing. An exact numerical time evolution is performed for small ferromagnetic TM clusters. The dynamical simulations show that after ultra-short laser pulse absorption the magnetization of these clusters decreases on a time scale of hundred femtoseconds. In particular, the results reproduce the experimentally observed laser-induced demagnetization in ferromagnets and demonstrate that this effect can be explained in terms of the following purely electronic non-adiabatic mechanism: First, on a time scale of 10–100 fs after laser excitation the spin-orbit coupling yields local angular-momentum transfer between the spins and the electron orbits, while subsequently the orbital angular momentum is very rapidly quenched in the lattice on the time scale of one femtosecond due to interatomic electron hoppings. In combination, these two processes result in a demagnetization within hundred or a few hundred femtoseconds after laser-pulse absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic properties and interactions between transition metal (TM) impurities and clusters in low-dimensional metallic hosts are studied using a first principles theoretical method. In the first part of this work, the effect of magnetic order in 3d-5d systems is addressed from the perspective of its influence on the enhancement of the magnetic anisotropy energy (MAE). In the second part, the possibility of using external electric fields (EFs) to control the magnetic properties and interactions between nanoparticles deposited at noble metal surfaces is investigated. The influence of 3d composition and magnetic order on the spin polarization of the substrate and its consequences on the MAE are analyzed for the case of 3d impurities in one- and two-dimensional polarizable hosts. It is shown that the MAE and easy- axis of monoatomic free standing 3d-Pt wires is mainly determined by the atomic spin-orbit (SO) coupling contributions. The competition between ferromagnetic (FM) and antiferromagnetic (AF) order in FePtn wires is studied in detail for n=1-4 as a function of the relative position between Fe atoms. Our results show an oscillatory behavior of the magnetic polarization of Pt atoms as a function of their distance from the magnetic impurities, which can be correlated to a long-ranged magnetic coupling of the Fe atoms. Exceptionally large variations of the induced spin and orbital moments at the Pt atoms are found as a function of concentration and magnetic order. Along with a violation of the third Hund’s rule at the Fe sites, these variations result in a non trivial behavior of the MAE. In the case of TM impurities and dimers at the Cu(111), the effects of surface charging and applied EFs on the magnetic properties and substrate-mediated magnetic interactions have been investigated. The modifications of the surface electronic structure, impurity local moments and magnetic exchange coupling as a result of the EF-induced metallic screening and charge rearrangements are analysed. In a first study, the properties of surface substitutional Co and Fe impurities are investigated as a function of the external charge per surface atom q. At large inter-impurity distances the effective magnetic exchange coupling ∆E between impurities shows RKKY-like oscillations as a function of the distance which are not significantly affected by the considered values of q. For distances r < 10 Å, important modifications in the magnitude of ∆E, involving changes from FM to AF coupling, are found depending non-monotonously on the value and polarity of q. The interaction energies are analysed from a local perspective. In a second study, the interplay between external EF effects, internal magnetic order and substrate-mediated magnetic coupling has been investigated for Mn dimers on Cu(111). Our calculations show that EF (∼ 1eV/Å) can induce a switching from AF to FM ground-state magnetic order within single Mn dimers. The relative coupling between a pair of dimers also shows RKKY-like oscillations as a function of the inter-dimer distance. Their effective magnetic exchange interaction is found to depend significantly on the magnetic order within the Mn dimers and on their relative orientation on the surface. The dependence of the substrate-mediated interaction on the magnetic state of the dimers is qualitatively explained in terms of the differences in the scattering of surface electrons. At short inter-dimer distances, the ground-state configuration is determined by an interplay between exchange interactions and EF effects. These results demonstrate that external surface charging and applied EFs offer remarkable possibilities of manipulating the sign and strength of the magnetic coupling of surface supported nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural, electronic and magnetic properties of one-dimensional 3d transition-metal (TM) monoatomic chains having linear, zigzag and ladder geometries are investigated in the frame-work of first-principles density-functional theory. The stability of long-range magnetic order along the nanowires is determined by computing the corresponding frozen-magnon dispersion relations as a function of the 'spin-wave' vector q. First, we show that the ground-state magnetic orders of V, Mn and Fe linear chains at the equilibrium interatomic distances are non-collinear (NC) spin-density waves (SDWs) with characteristic equilibrium wave vectors q that depend on the composition and interatomic distance. The electronic and magnetic properties of these novel spin-spiral structures are discussed from a local perspective by analyzing the spin-polarized electronic densities of states, the local magnetic moments and the spin-density distributions for representative values q. Second, we investigate the stability of NC spin arrangements in Fe zigzag chains and ladders. We find that the non-collinear SDWs are remarkably stable in the biatomic chains (square ladder), whereas ferromagnetic order (q =0) dominates in zigzag chains (triangular ladders). The different magnetic structures are interpreted in terms of the corresponding effective exchange interactions J(ij) between the local magnetic moments μ(i) and μ(j) at atoms i and j. The effective couplings are derived by fitting a classical Heisenberg model to the ab initio magnon dispersion relations. In addition they are analyzed in the framework of general magnetic phase diagrams having arbitrary first, second, and third nearest-neighbor (NN) interactions J(ij). The effect of external electric fields (EFs) on the stability of NC magnetic order has been quantified for representative monoatomic free-standing and deposited chains. We find that an external EF, which is applied perpendicular to the chains, favors non-collinear order in V chains, whereas it stabilizes the ferromagnetic (FM) order in Fe chains. Moreover, our calculations reveal a change in the magnetic order of V chains deposited on the Cu(110) surface in the presence of external EFs. In this case the NC spiral order, which was unstable in the absence of EF, becomes the most favorable one when perpendicular fields of the order of 0.1 V/Å are applied. As a final application of the theory we study the magnetic interactions within monoatomic TM chains deposited on graphene sheets. One observes that even weak chain substrate hybridizations can modify the magnetic order. Mn and Fe chains show incommensurable NC spin configurations. Remarkably, V chains show a transition from a spiral magnetic order in the freestanding geometry to FM order when they are deposited on a graphene sheet. Some TM-terminated zigzag graphene-nanoribbons, for example V and Fe terminated nanoribbons, also show NC spin configurations. Finally, the magnetic anisotropy energies (MAEs) of TM chains on graphene are investigated. It is shown that Co and Fe chains exhibit significant MAEs and orbital magnetic moments with in-plane easy magnetization axis. The remarkable changes in the magnetic properties of chains on graphene are correlated to charge transfers from the TMs to NN carbon atoms. Goals and limitations of this study and the resulting perspectives of future investigations are discussed.