2 resultados para trajectory accuracy
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Low perceptual familiarity with relatively rarer left-handed as opposed to more common right-handed individuals may result in athletes' poorer ability to anticipate the former's action intentions. Part of such left-right asymmetry in visual anticipation could be due to an inefficient gaze strategy during confrontation with left-handed individuals. To exemplify, observers may not mirror their gaze when viewing left- vs. right-handed actions but preferentially fixate on an opponent's right body side, irrespective of an opponent's handedness, owing to the predominant exposure to right-handed actions. So far empirical verification of such assumption, however, is lacking. Here we report on an experiment where team-handball goalkeepers' and non-goalkeepers' gaze behavior was recorded while they predicted throw direction of left- and right-handed 7-m penalties shown as videos on a computer monitor. As expected, goalkeepers were considerably more accurate than non-goalkeepers and prediction was better against right- than left-handed penalties. However, there was no indication of differences in gaze measures (i.e., number of fixations, overall and final fixation duration, time-course of horizontal or vertical fixation deviation) as a function of skill group or the penalty-takers' handedness. Findings suggest that inferior anticipation of left-handed compared to right-handed individuals' action intentions may not be associated with misalignment in gaze behavior. Rather, albeit looking similarly, accuracy differences could be due to observers' differential ability of picking up and interpreting the visual information provided by left- vs. right-handed movements.
Resumo:
People possess different sensory modalities to detect, interpret, and efficiently act upon various events in a complex and dynamic environment (Fetsch, DeAngelis, & Angelaki, 2013). Much empirical work has been done to understand the interplay of modalities (e.g. audio-visual interactions, see Calvert, Spence, & Stein, 2004). On the one hand, integration of multimodal input as a functional principle of the brain enables the versatile and coherent perception of the environment (Lewkowicz & Ghazanfar, 2009). On the other hand, sensory integration does not necessarily mean that input from modalities is always weighted equally (Ernst, 2008). Rather, when two or more modalities are stimulated concurrently, one often finds one modality dominating over another. Study 1 and 2 of the dissertation addressed the developmental trajectory of sensory dominance. In both studies, 6-year-olds, 9-year-olds, and adults were tested in order to examine sensory (audio-visual) dominance across different age groups. In Study 3, sensory dominance was put into an applied context by examining verbal and visual overshadowing effects among 4- to 6-year olds performing a face recognition task. The results of Study 1 and Study 2 support default auditory dominance in young children as proposed by Napolitano and Sloutsky (2004) that persists up to 6 years of age. For 9-year-olds, results on privileged modality processing were inconsistent. Whereas visual dominance was revealed in Study 1, privileged auditory processing was revealed in Study 2. Among adults, a visual dominance was observed in Study 1, which has also been demonstrated in preceding studies (see Spence, Parise, & Chen, 2012). No sensory dominance was revealed in Study 2 for adults. Potential explanations are discussed. Study 3 referred to verbal and visual overshadowing effects in 4- to 6-year-olds. The aim was to examine whether verbalization (i.e., verbally describing a previously seen face), or visualization (i.e., drawing the seen face) might affect later face recognition. No effect of visualization on recognition accuracy was revealed. As opposed to a verbal overshadowing effect, a verbal facilitation effect occurred. Moreover, verbal intelligence was a significant predictor for recognition accuracy in the verbalization group but not in the control group. This suggests that strengthening verbal intelligence in children can pay off in non-verbal domains as well, which might have educational implications.