3 resultados para total and diastereoselective synthesis
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Während der letzten 20 Jahre hat sich das Periodensystem bis zu den Elementen 114 und 116 erweitert. Diese sind kernphysikalisch nachgewiesen, so dass jetzt die chemische Untersuchung an erster Selle steht. Nachdem sich das Periodensystem bis zum Element 108 so verhält, wie man es dem Periodensystem nach annimmt, wird in dieser Arbeit die Chemie des Elements 112 untersucht. Dabei geht es um die Adsorptionsenergie auf einer Gold-Ober fläche, weil dies der physikalisch/chemische Prozess ist, der bei der Analyse angewandt wird. Die Methode, die in dieser Arbeit angwandt wird, ist die relativistische Dichtefunktionalmethode. Im ersten Teil wird das Vielkörperproblem in allgemeiner Form behandelt, und im zweiten die grundlegenden Eigenschaften und Formulierungen der Dichtefunktionaltheorie. Die Arbeit beschreibt zwei prinzipiell unterschiedliche Ansätze, wie die Adsorptionsenergie berechnet werden kann. Zum einen ist es die sogenannte Clustermethode, bei der ein Atom auf ein relativ kleines Cluster aufgebracht und dessen Adsorptionsenergie berechnet wird. Wenn es gelingt, die Konvergenz mit der Größe des Clusters zu erreichen, sollte dies zu einem Wert für die Adsorptionsenergie führen. Leider zeigt sich in den Rechnungen, dass aufgrund des zeitlichen Aufwandes die Konvergenz für die Clusterrechnungen nicht erreicht wird. Es werden sehr ausführlich die drei verschiedenen Adsorptionsplätze, die Top-, die Brücken- und die Muldenposition, berechnet. Sehr viel mehr Erfolg erzielt man mit der Einbettungsmethode, bei der ein kleiner Cluster von vielen weiteren Atomen an den Positionen, die sie im Festkörpers auf die Adsorptionsenergie soweit sichergestellt ist, dass physikalisch-chemisch gute Ergebnisse erzielt werden. Alle hier gennanten Rechnungen sowohl mit der Cluster- wie mit der Einbettungsmethode verlangen sehr, sehr lange Rechenzeiten, die, wie oben bereits erwähnt, nicht zu einer Konvergenz für die Clusterrechnungen ausreichten. In der Arbeit wird bei allen Rechnungen sehr detailliert auf die Abhängigkeit von den möglichen Basissätzen eingegangen, die ebenfalls in entscheidender Weise zur Länge und Qualität der Rechnungen beitragen. Die auskonvergierten Rechnungen werden in der Form von Potentialkurven, Density of States (DOS), Overlap Populations sowie Partial Crystal Overlap Populations analysiert. Im Ergebnis zeigt sich, dass die Adsoptionsenergie für das Element 112 auf einer Goldoberfläche ca. 0.2 eV niedriger ist als die Adsorption von Quecksilber auf der gleichen Ober fläche. Mit diesem Ergebnis haben die experimentellen Kernchemiker einen Wert an der Hand, mit dem sie eine Anhaltspunkt haben, wo sie bei den Messungen die wenigen zu erwartenden Ereignisse finden können.
Polarization and correlation phenomena in the radiative electron capture by bare highly-charged ions
Resumo:
In dieser Arbeit wird die Wechselwirkung zwischen einem Photon und einem Elektron im starken Coulombfeld eines Atomkerns am Beispiel des radiativen Elektroneneinfangs beim Stoß hochgeladener Teilchen untersucht. In den letzten Jahren wurde dieser Ladungsaustauschprozess insbesondere für relativistische Ion–Atom–Stöße sowohl experimentell als auch theoretisch ausführlich erforscht. In Zentrum standen dabei haupsächlich die totalen und differentiellen Wirkungsquerschnitte. In neuerer Zeit werden vermehrt Spin– und Polarisationseffekte sowie Korrelationseffekte bei diesen Stoßprozessen diskutiert. Man erwartet, dass diese sehr empfindlich auf relativistische Effekte im Stoß reagieren und man deshalb eine hervorragende Methode zu deren Bestimmung erhält. Darüber hinaus könnten diese Messungen auch indirekt dazu führen, dass man die Polarisation des Ionenstrahls bestimmen kann. Damit würden sich neue experimentelle Möglichkeiten sowohl in der Atom– als auch der Kernphysik ergeben. In dieser Dissertation werden zunächst diese ersten Untersuchungen zu den Spin–, Polarisations– und Korrelationseffekten systematisch zusammengefasst. Die Dichtematrixtheorie liefert hierzu die geeignete Methode. Mit dieser Methode werden dann die allgemeinen Gleichungen für die Zweistufen–Rekombination hergeleitet. In diesem Prozess wird ein Elektron zunächst radiativ in einen angeregten Zustand eingefangen, der dann im zweiten Schritt unter Emission des zweiten (charakteristischen) Photons in den Grundzustand übergeht. Diese Gleichungen können natürlich auf beliebige Mehrstufen– sowie Einstufen–Prozesse erweitert werden. Im direkten Elektroneneinfang in den Grundzustand wurde die ”lineare” Polarisation der Rekombinationsphotonen untersucht. Es wurde gezeigt, dass man damit eine Möglichkeit zur Bestimmung der Polarisation der Teilchen im Eingangskanal des Schwerionenstoßes hat. Rechnungen zur Rekombination bei nackten U92+ Projektilen zeigen z. B., dass die Spinpolarisation der einfallenden Elektronen zu einer Drehung der linearen Polarisation der emittierten Photonen aus der Streuebene heraus führt. Diese Polarisationdrehung kann mit neu entwickelten orts– und polarisationsempfindlichen Festkörperdetektoren gemessen werden. Damit erhält man eine Methode zur Messung der Polarisation der einfallenden Elektronen und des Ionenstrahls. Die K–Schalen–Rekombination ist ein einfaches Beispiel eines Ein–Stufen–Prozesses. Das am besten bekannte Beispiel der Zwei–Stufen–Rekombination ist der Elektroneneinfang in den 2p3/2–Zustand des nackten Ions und anschließendem Lyman–1–Zerfall (2p3/2 ! 1s1/2). Im Rahmen der Dichte–Matrix–Theorie wurden sowohl die Winkelverteilung als auch die lineare Polarisation der charakteristischen Photonen untersucht. Beide (messbaren) Größen werden beträchtlich durch die Interferenz des E1–Kanals (elektrischer Dipol) mit dem viel schwächeren M2–Kanal (magnetischer Quadrupol) beeinflusst. Für die Winkelverteilung des Lyman–1 Zerfalls im Wasserstoff–ähnlichen Uran führt diese E1–M2–Mischung zu einem 30%–Effekt. Die Berücksichtigung dieser Interferenz behebt die bisher vorhandene Diskrepanz von Theorie und Experiment beim Alignment des 2p3/2–Zustands. Neben diesen Ein–Teichen–Querschnitten (Messung des Einfangphotons oder des charakteristischen Photons) wurde auch die Korrelation zwischen den beiden berechnet. Diese Korrelationen sollten in X–X–Koinzidenz–Messungen beobbachtbar sein. Der Schwerpunkt dieser Untersuchungen lag bei der Photon–Photon–Winkelkorrelation, die experimentell am einfachsten zu messen ist. In dieser Arbeit wurden ausführliche Berechnungen der koinzidenten X–X–Winkelverteilungen beim Elektroneneinfang in den 2p3/2–Zustand des nackten Uranions und beim anschließenden Lyman–1–Übergang durchgeführt. Wie bereits erwähnt, hängt die Winkelverteilung des charakteristischen Photons nicht nur vom Winkel des Rekombinationsphotons, sondern auch stark von der Spin–Polarisation der einfallenden Teilchen ab. Damit eröffnet sich eine zweite Möglichkeit zur Messung der Polaristion des einfallenden Ionenstrahls bzw. der einfallenden Elektronen.