5 resultados para tiny robots
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
In the past years, we could observe a significant amount of new robotic systems in science, industry, and everyday life. To reduce the complexity of these systems, the industry constructs robots that are designated for the execution of a specific task such as vacuum cleaning, autonomous driving, observation, or transportation operations. As a result, such robotic systems need to combine their capabilities to accomplish complex tasks that exceed the abilities of individual robots. However, to achieve emergent cooperative behavior, multi-robot systems require a decision process that copes with the communication challenges of the application domain. This work investigates a distributed multi-robot decision process, which addresses unreliable and transient communication. This process composed by five steps, which we embedded into the ALICA multi-agent coordination language guided by the PROViDE negotiation middleware. The first step encompasses the specification of the decision problem, which is an integral part of the ALICA implementation. In our decision process, we describe multi-robot problems by continuous nonlinear constraint satisfaction problems. The second step addresses the calculation of solution proposals for this problem specification. Here, we propose an efficient solution algorithm that integrates incomplete local search and interval propagation techniques into a satisfiability solver, which forms a satisfiability modulo theories (SMT) solver. In the third decision step, the PROViDE middleware replicates the solution proposals among the robots. This replication process is parameterized with a distribution method, which determines the consistency properties of the proposals. In a fourth step, we investigate the conflict resolution. Therefore, an acceptance method ensures that each robot supports one of the replicated proposals. As we integrated the conflict resolution into the replication process, a sound selection of the distribution and acceptance methods leads to an eventual convergence of the robot proposals. In order to avoid the execution of conflicting proposals, the last step comprises a decision method, which selects a proposal for implementation in case the conflict resolution fails. The evaluation of our work shows that the usage of incomplete solution techniques of the constraint satisfaction solver outperforms the runtime of other state-of-the-art approaches for many typical robotic problems. We further show by experimental setups and practical application in the RoboCup environment that our decision process is suitable for making quick decisions in the presence of packet loss and delay. Moreover, PROViDE requires less memory and bandwidth compared to other state-of-the-art middleware approaches.
Resumo:
Little is known about the diversity of wheat (Triticum spp.) in Oman. Therefore, a survey was conducted in northern Oman to collect landraces of Triticum durum, T. aestivum and T. dicoccon for subsequent morphological characterization and investigations on stress adaptation. The results show that the cultivation of these landraces (the genetic composition of which remains to be studied in more detail) is done primarily by traditional farmers who preserve the inherited germplasm on often tiny plots in remote mountain oases. This type of traditional cultivation is under heavy economic pressure. An appendix of landraces of other crops collected in the Batinah region and in the mountain oases can be found online.
Resumo:
Distributed systems are one of the most vital components of the economy. The most prominent example is probably the internet, a constituent element of our knowledge society. During the recent years, the number of novel network types has steadily increased. Amongst others, sensor networks, distributed systems composed of tiny computational devices with scarce resources, have emerged. The further development and heterogeneous connection of such systems imposes new requirements on the software development process. Mobile and wireless networks, for instance, have to organize themselves autonomously and must be able to react to changes in the environment and to failing nodes alike. Researching new approaches for the design of distributed algorithms may lead to methods with which these requirements can be met efficiently. In this thesis, one such method is developed, tested, and discussed in respect of its practical utility. Our new design approach for distributed algorithms is based on Genetic Programming, a member of the family of evolutionary algorithms. Evolutionary algorithms are metaheuristic optimization methods which copy principles from natural evolution. They use a population of solution candidates which they try to refine step by step in order to attain optimal values for predefined objective functions. The synthesis of an algorithm with our approach starts with an analysis step in which the wanted global behavior of the distributed system is specified. From this specification, objective functions are derived which steer a Genetic Programming process where the solution candidates are distributed programs. The objective functions rate how close these programs approximate the goal behavior in multiple randomized network simulations. The evolutionary process step by step selects the most promising solution candidates and modifies and combines them with mutation and crossover operators. This way, a description of the global behavior of a distributed system is translated automatically to programs which, if executed locally on the nodes of the system, exhibit this behavior. In our work, we test six different ways for representing distributed programs, comprising adaptations and extensions of well-known Genetic Programming methods (SGP, eSGP, and LGP), one bio-inspired approach (Fraglets), and two new program representations called Rule-based Genetic Programming (RBGP, eRBGP) designed by us. We breed programs in these representations for three well-known example problems in distributed systems: election algorithms, the distributed mutual exclusion at a critical section, and the distributed computation of the greatest common divisor of a set of numbers. Synthesizing distributed programs the evolutionary way does not necessarily lead to the envisaged results. In a detailed analysis, we discuss the problematic features which make this form of Genetic Programming particularly hard. The two Rule-based Genetic Programming approaches have been developed especially in order to mitigate these difficulties. In our experiments, at least one of them (eRBGP) turned out to be a very efficient approach and in most cases, was superior to the other representations.
Resumo:
Context awareness, dynamic reconfiguration at runtime and heterogeneity are key characteristics of future distributed systems, particularly in ubiquitous and mobile computing scenarios. The main contributions of this dissertation are theoretical as well as architectural concepts facilitating information exchange and fusion in heterogeneous and dynamic distributed environments. Our main focus is on bridging the heterogeneity issues and, at the same time, considering uncertain, imprecise and unreliable sensor information in information fusion and reasoning approaches. A domain ontology is used to establish a common vocabulary for the exchanged information. We thereby explicitly support different representations for the same kind of information and provide Inter-Representation Operations that convert between them. Special account is taken of the conversion of associated meta-data that express uncertainty and impreciseness. The Unscented Transformation, for example, is applied to propagate Gaussian normal distributions across highly non-linear Inter-Representation Operations. Uncertain sensor information is fused using the Dempster-Shafer Theory of Evidence as it allows explicit modelling of partial and complete ignorance. We also show how to incorporate the Dempster-Shafer Theory of Evidence into probabilistic reasoning schemes such as Hidden Markov Models in order to be able to consider the uncertainty of sensor information when deriving high-level information from low-level data. For all these concepts we provide architectural support as a guideline for developers of innovative information exchange and fusion infrastructures that are particularly targeted at heterogeneous dynamic environments. Two case studies serve as proof of concept. The first case study focuses on heterogeneous autonomous robots that have to spontaneously form a cooperative team in order to achieve a common goal. The second case study is concerned with an approach for user activity recognition which serves as baseline for a context-aware adaptive application. Both case studies demonstrate the viability and strengths of the proposed solution and emphasize that the Dempster-Shafer Theory of Evidence should be preferred to pure probability theory in applications involving non-linear Inter-Representation Operations.
Resumo:
This thesis investigates a method for human-robot interaction (HRI) in order to uphold productivity of industrial robots like minimization of the shortest operation time, while ensuring human safety like collision avoidance. For solving such problems an online motion planning approach for robotic manipulators with HRI has been proposed. The approach is based on model predictive control (MPC) with embedded mixed integer programming. The planning strategies of the robotic manipulators mainly considered in the thesis are directly performed in the workspace for easy obstacle representation. The non-convex optimization problem is approximated by a mixed-integer program (MIP). It is further effectively reformulated such that the number of binary variables and the number of feasible integer solutions are drastically decreased. Safety-relevant regions, which are potentially occupied by the human operators, can be generated online by a proposed method based on hidden Markov models. In contrast to previous approaches, which derive predictions based on probability density functions in the form of single points, such as most likely or expected human positions, the proposed method computes safety-relevant subsets of the workspace as a region which is possibly occupied by the human at future instances of time. The method is further enhanced by combining reachability analysis to increase the prediction accuracy. These safety-relevant regions can subsequently serve as safety constraints when the motion is planned by optimization. This way one arrives at motion plans that are safe, i.e. plans that avoid collision with a probability not less than a predefined threshold. The developed methods have been successfully applied to a developed demonstrator, where an industrial robot works in the same space as a human operator. The task of the industrial robot is to drive its end-effector according to a nominal sequence of grippingmotion-releasing operations while no collision with a human arm occurs.