2 resultados para time invariant systems

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In der algebraischen Kryptoanalyse werden moderne Kryptosysteme als polynomielle, nichtlineare Gleichungssysteme dargestellt. Das Lösen solcher Gleichungssysteme ist NP-hart. Es gibt also keinen Algorithmus, der in polynomieller Zeit ein beliebiges nichtlineares Gleichungssystem löst. Dennoch kann man aus modernen Kryptosystemen Gleichungssysteme mit viel Struktur generieren. So sind diese Gleichungssysteme bei geeigneter Modellierung quadratisch und dünn besetzt, damit nicht beliebig. Dafür gibt es spezielle Algorithmen, die eine Lösung solcher Gleichungssysteme finden. Ein Beispiel dafür ist der ElimLin-Algorithmus, der mit Hilfe von linearen Gleichungen das Gleichungssystem iterativ vereinfacht. In der Dissertation wird auf Basis dieses Algorithmus ein neuer Solver für quadratische, dünn besetzte Gleichungssysteme vorgestellt und damit zwei symmetrische Kryptosysteme angegriffen. Dabei sind die Techniken zur Modellierung der Chiffren von entscheidender Bedeutung, so das neue Techniken entwickelt werden, um Kryptosysteme darzustellen. Die Idee für das Modell kommt von Cube-Angriffen. Diese Angriffe sind besonders wirksam gegen Stromchiffren. In der Arbeit werden unterschiedliche Varianten klassifiziert und mögliche Erweiterungen vorgestellt. Das entstandene Modell hingegen, lässt sich auch erfolgreich auf Blockchiffren und auch auf andere Szenarien erweitern. Bei diesen Änderungen muss das Modell nur geringfügig geändert werden.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a new scheme to solve the time dependent Dirac-Fock-Slater equation (TDDFS) for heavy many electron ion-atom collision systems. Up to now time independent self consistent molecular orbitals have been used to expand the time dependent wavefunction and rather complicated potential coupling matrix elements have been neglected. Our idea is to minimize the potential coupling by using the time dependent electronic density to generate molecular basis functions. We present the first results for 16 MeV S{^16+} on Ar.