3 resultados para summation

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Summation ueber des vollstaendige Spektrum des Atoms, die in der Stoehrungstheorie zweiter Ordnung vorkommt, wurde mit Hilfe der Greenschen Funktion Methode berechnet. Die Methode der Greenschen Funktion verlangt die Berechnung der unterschiedlichen Greenschen Funktionen: eine Coulomb-Greensche-Funktion im Fall von wasserstoffaehnlichen Ionen und eine Zentral-feld-Greensche-Funktion im Fall des Vielelektronen-Atoms. Die entwickelte Greensche Funktion erlaubte uns die folgenden atomaren Systeme in die Zweiphotonenionisierung der folgenden atomaren Systeme zu untersuchen: - wasserstoffaehnliche Ionen, um relativistische und Multipol-Effekte aufzudecken, - die aeussere Schale des Lithium; Helium und Helium-aehnliches Neon im Grundzustand, um taugliche Modelle des atomaren Feldes zu erhalten, - K- und L-Schalen des Argon, um die Vielelektronen-Effekte abzuschaetzen. Zusammenfassend, die relativistische Effekte ergeben sich in einer allgemeinen Reduzierung der Zweiphotonen Wirkungsquerschnitte. Zum Beispiel, betraegt das Verhaeltnis zwischen den nichtrelativistischen und relativistischen Wirkungsquerschnitten einen Faktor zwei fuer wasserstoffaehnliches Uran. Ausser dieser relativistischen Kontraktion, ist auch die relativistische Aufspaltung der Zwischenzustaende fuer mittelschwere Ionen sichtbar. Im Gegensatz zu den relativistischen Effekten, beeinflussen die Multipol-Effekte die totalen Wirkungsquerschnitte sehr wenig, so dass die Langwellennaeherung mit der exakten Naeherung fuer schwere Ionen sogar innerhalb von 5 Prozent uebereinstimmt. Die winkelaufgeloesten Wirkungsquerschnitte werden durch die relativistischen Effekte auf eine beeindruckende Weise beeinflusst: die Form der differentiellen Wirkungsquerschnitte aendert sich (qualitativ) abhaengig von der Photonenenergie. Ausserdem kann die Beruecksichtigung der hoeheren Multipole die elektronische Ausbeute um einen Faktor drei aendern. Die Vielelektronen-Effekte in der Zweiphotonenionisierung wurden am Beispiel der K- und L-Schalen des Argon analysiert. Hiermit wurden die totalen Wirkungsquerschnitte in einer Ein-aktives-Elektron-Naeherung (single-active-electron approximation) berechnet. Es hat sich herausgestellt, dass die Elektron--Elektron-Wechselwirkung sehr wichtig fuer die L-Schale und vernachlaessigbar fuer die K-Schale ist. Das bedeutet, dass man die totalen Wirkungsquerschnitte mit wasserstoffaehnlichen Modellen im Fall der K-Schale beschreiben kann, aber fuer die L-Schale fortgeschrittene Modelle erforderlich sind. Die Ergebnisse fuer Vielelektronen-Atome wurden mittels einer Dirac-Zentral-feld-Greenschen Funktion erlangt. Ein numerischer Algorithmus wurde urspruenglich von McGuire (1981) fuer der Schroedinger-Zentral-feld-Greensche Funktion eingefuehrt. Der Algorithmus wurde in dieser Arbeit zum ersten Mal fuer die Dirac-Gleichung angewandt. Unser Algorithmus benutzt die Kummer- und Tricomi-Funktionen, die mit Hilfe eines zuverlaessigen, aber noch immer langsamen Programmes berechnet wurden. Die Langsamkeit des Programms begrenzt den Bereich der Aufgaben, die effizient geloest werden koennen. Die Zentral-feld-Greensche Funktion konnte bei den folgenden Problemen benutzt werden: - Berechnung der Zweiphotonen-Zerfallsraten, - Berechnung der Zweiphotonenanregung und -ionisierungs-Wirkungsquerschnitte, - Berechnung die Multiphotonenanregung und -ionisierungs-Wirkungsquerschnitte, - Berechnung einer atomaren Vielelektronen-Green-Funktion. Von diesen Aufgaben koennen nur die ersten beiden in angemessener Zeit geloest werden. Fuer die letzten beiden Aufgaben ist unsere Implementierung zu langsam und muss weiter verbessert werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we have mainly achieved the following: 1. we provide a review of the main methods used for the computation of the connection and linearization coefficients between orthogonal polynomials of a continuous variable, moreover using a new approach, the duplication problem of these polynomial families is solved; 2. we review the main methods used for the computation of the connection and linearization coefficients of orthogonal polynomials of a discrete variable, we solve the duplication and linearization problem of all orthogonal polynomials of a discrete variable; 3. we propose a method to generate the connection, linearization and duplication coefficients for q-orthogonal polynomials; 4. we propose a unified method to obtain these coefficients in a generic way for orthogonal polynomials on quadratic and q-quadratic lattices. Our algorithmic approach to compute linearization, connection and duplication coefficients is based on the one used by Koepf and Schmersau and on the NaViMa algorithm. Our main technique is to use explicit formulas for structural identities of classical orthogonal polynomial systems. We find our results by an application of computer algebra. The major algorithmic tools for our development are Zeilberger’s algorithm, q-Zeilberger’s algorithm, the Petkovšek-van-Hoeij algorithm, the q-Petkovšek-van-Hoeij algorithm, and Algorithm 2.2, p. 20 of Koepf's book "Hypergeometric Summation" and it q-analogue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Es ist allgemein bekannt, dass sich zwei gegebene Systeme spezieller Funktionen durch Angabe einer Rekursionsgleichung und entsprechend vieler Anfangswerte identifizieren lassen, denn computeralgebraisch betrachtet hat man damit eine Normalform vorliegen. Daher hat sich die interessante Forschungsfrage ergeben, Funktionensysteme zu identifizieren, die über ihre Rodriguesformel gegeben sind. Zieht man den in den 1990er Jahren gefundenen Zeilberger-Algorithmus für holonome Funktionenfamilien hinzu, kann die Rodriguesformel algorithmisch in eine Rekursionsgleichung überführt werden. Falls die Funktionenfamilie überdies hypergeometrisch ist, sogar laufzeiteffizient. Um den Zeilberger-Algorithmus überhaupt anwenden zu können, muss es gelingen, die Rodriguesformel in eine Summe umzuwandeln. Die vorliegende Arbeit beschreibt die Umwandlung einer Rodriguesformel in die genannte Normalform für den kontinuierlichen, den diskreten sowie den q-diskreten Fall vollständig. Das in Almkvist und Zeilberger (1990) angegebene Vorgehen im kontinuierlichen Fall, wo die in der Rodriguesformel auftauchende n-te Ableitung über die Cauchysche Integralformel in ein komplexes Integral überführt wird, zeigt sich im diskreten Fall nun dergestalt, dass die n-te Potenz des Vorwärtsdifferenzenoperators in eine Summenschreibweise überführt wird. Die Rekursionsgleichung aus dieser Summe zu generieren, ist dann mit dem diskreten Zeilberger-Algorithmus einfach. Im q-Fall wird dargestellt, wie Rekursionsgleichungen aus vier verschiedenen q-Rodriguesformeln gewonnen werden können, wobei zunächst die n-te Potenz der jeweiligen q-Operatoren in eine Summe überführt wird. Drei der vier Summenformeln waren bislang unbekannt. Sie wurden experimentell gefunden und per vollständiger Induktion bewiesen. Der q-Zeilberger-Algorithmus erzeugt anschließend aus diesen Summen die gewünschte Rekursionsgleichung. In der Praxis ist es sinnvoll, den schnellen Zeilberger-Algorithmus anzuwenden, der Rekursionsgleichungen für bestimmte Summen über hypergeometrische Terme ausgibt. Auf dieser Fassung des Algorithmus basierend wurden die Überlegungen in Maple realisiert. Es ist daher sinnvoll, dass alle hier aufgeführten Prozeduren, die aus kontinuierlichen, diskreten sowie q-diskreten Rodriguesformeln jeweils Rekursionsgleichungen erzeugen, an den hypergeometrischen Funktionenfamilien der klassischen orthogonalen Polynome, der klassischen diskreten orthogonalen Polynome und an der q-Hahn-Klasse des Askey-Wilson-Schemas vollständig getestet werden. Die Testergebnisse liegen tabellarisch vor. Ein bedeutendes Forschungsergebnis ist, dass mit der im q-Fall implementierten Prozedur zur Erzeugung einer Rekursionsgleichung aus der Rodriguesformel bewiesen werden konnte, dass die im Standardwerk von Koekoek/Lesky/Swarttouw(2010) angegebene Rodriguesformel der Stieltjes-Wigert-Polynome nicht korrekt ist. Die richtige Rodriguesformel wurde experimentell gefunden und mit den bereitgestellten Methoden bewiesen. Hervorzuheben bleibt, dass an Stelle von Rekursionsgleichungen analog Differential- bzw. Differenzengleichungen für die Identifikation erzeugt wurden. Wie gesagt gehört zu einer Normalform für eine holonome Funktionenfamilie die Angabe der Anfangswerte. Für den kontinuierlichen Fall wurden umfangreiche, in dieser Gestalt in der Literatur noch nie aufgeführte Anfangswertberechnungen vorgenommen. Im diskreten Fall musste für die Anfangswertberechnung zur Differenzengleichung der Petkovsek-van-Hoeij-Algorithmus hinzugezogen werden, um die hypergeometrischen Lösungen der resultierenden Rekursionsgleichungen zu bestimmen. Die Arbeit stellt zu Beginn den schnellen Zeilberger-Algorithmus in seiner kontinuierlichen, diskreten und q-diskreten Variante vor, der das Fundament für die weiteren Betrachtungen bildet. Dabei wird gebührend auf die Unterschiede zwischen q-Zeilberger-Algorithmus und diskretem Zeilberger-Algorithmus eingegangen. Bei der praktischen Umsetzung wird Bezug auf die in Maple umgesetzten Zeilberger-Implementationen aus Koepf(1998/2014) genommen. Die meisten der umgesetzten Prozeduren werden im Text dokumentiert. Somit wird ein vollständiges Paket an Algorithmen bereitgestellt, mit denen beispielsweise Formelsammlungen für hypergeometrische Funktionenfamilien überprüft werden können, deren Rodriguesformeln bekannt sind. Gleichzeitig kann in Zukunft für noch nicht erforschte hypergeometrische Funktionenklassen die beschreibende Rekursionsgleichung erzeugt werden, wenn die Rodriguesformel bekannt ist.