3 resultados para spin stabilized satellite
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The photoionization cross sections for the production of the Kr II 4s state and Kr II satellite states were studied in the 4s ionization threshold region. The interference of direct photoionization and ionization through the autoionization decay of doubly-excited states was considered. In the calculations of doubly-excited state energies, performed by a configuration interaction technique, the 4p spin-orbit interaction and the (Kr II core)-(excited electron) Coulomb interaction were included. The theoretical cross sections are in many cases in good agreement with the measured values. Strong resonant features in the satellite spectra with threshold energies greater than 30 eV are predicted.
Resumo:
We present spin-polarized Hartree-Fock-Slater calculations performed with the highly accurate numerical finite element method for the atoms N and 0 and the diatomic radical OH as examples.
Resumo:
Ultrafast laser pulses have become an integral part of the toolbox of countless laboratories doing physics, chemistry, and biological research. The work presented here is motivated by a section in the ever-growing, interdisciplinary research towards understanding the fundamental workings of light-matter interactions. Specifically, attosecond pulses can be useful tools to obtain the desired insight. However access to, and the utility of, such pulses is dependent on the generation of intense, few-cycle, carrier-envelope-phase stabilized laser pulses. The presented work can be thought of as a sort of roadmap towards the latter. From the oscillator which provides the broadband seed to amplification methods, the integral pieces necessary for the generation of attosecond pulses are discussed. A range of topics from the fundamentals to design challenges is presented, outfitting the way towards the practical implementation of an intense few-cycle carrier-envelope-phase stabilized laser source.