3 resultados para soil factors
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Two-third of the terrestrial C is stored in soils, and more than 50% of soil organic C (SOC) is stored in subsoils from 30 – 100 cm. Hence, subsoil is important as a source or sink for CO2 in the global carbon cycle. Especially the stable organic carbon (OC) is stored in subsoil, as several studies have shown that subsoil OC is of a higher average age than topsoil OC. However, there is still a lack of knowledge regarding the mechanisms of C sequestration and C turnover in subsoil. Three main factors are discussed, which possibly reduce carbon turnover rates in subsoil: Resource limitation, changes in the microbial community, and changes in gas conditions. The experiments conducted in this study, which aimed to elucidate the importance of the mentioned factors, focused on two neighbouring arable sites, with depth profiles differing in SOC stocks: One Colluvic Cambisol (Cam) with high SOC contents (8-12 g kg-1) throughout the profile and one Haplic Luvisol (Luv) with low SOC contents (3-4 g kg-1) below 30 cm depth. The first experiment was designed to gain more knowledge regarding the microbial community and its influence on carbon sequestration in subsoil. Soil samples were taken at four different depths on the two sites. Microbial biomass C (MBC) was determined to identify depth gradients in relation to the natural C availability. Bacterial and fungal residues as well as ergosterol were determined to quantify changes in the in the microbial community composition. Multi-substrate-induced-respiration (MSIR) was used to identify shifts in functional diversity of the microbial community. The MSIR revealed that substrate use in subsoil differed significantly from that in topsoil and also differed highly between the two subsoils, indicating a strong influence of resource limitations on microbial substrate use. Amino sugar analysis and the ratio of ergosterol to microbial biomass C showed that fungal dominance decreased with depth. The results clearly demonstrated that microbial parameters changed with depth according to substrate availability. The second experiment was an incubation experiment using subsoil gas conditions with and without the addition of C4 plant residues. Soil samples were taken from topsoil and subsoil of the two sites. SOC losses during the incubation, were not influenced by the subsoil gas conditions. Plant-derived C losses were generally stronger in the Cam (7.5 mg g-1), especially at subsoil gas conditions, than in the Luv (7.0 mg g-1). Subsoil gas conditions had no general effects on microbial measures with and without plant residue addition. However, the contribution of plant-derived MBC to total MBC was significantly reduced at subsoil gas conditions. This lead to the conclusion that subsoil gas conditions alter the metabolism of microorganisms but not the degradation of added plant residues is general. The third experiment was a field experiment carried out for two years. Mesh bags containing original soil material and maize root residues (C4 plant) were buried at three different depths at the two sites. The recovery of the soilbags took place 12, 18, and 24 months after burial. We determined the effects of these treatments on SOC, density fractions, and MBC. The mean residence time for maize-derived C was similar at all depths and both sites (403 d). MBC increased to a similar extent (2.5 fold) from the initial value to maximum value. This increase relied largely on the added maize root residues. However, there were clear differences visible in terms of the substrate use efficiency, which decreased with depth and was lower in the Luv than in the Cam. Hence freshly added plant material is highly accessible to microorganisms in subsoil and therefore equally degraded at both sites and depths, but its metabolic use was determined by the legacy of soil properties. These findings provide strong evidence that resource availability from autochthonous SOM as well as from added plant residues have a strong influence on the microbial community and its use of different substrates. However, under all of the applied conditions there was no evidence that complex substrates, i.e. plant residues, were less degraded in subsoil than in topsoil.
Resumo:
The objective of this study was to report single season effects of wood biochar (char) application coupled with N fertilization on soil chemical properties, aerobic rice growth and grain yield in a clayey Rhodic Ferralsol in the Brazilian Savannah. Char application effected an increase in soil pH, K, Ca, Mg, CEC, Mn and nitrate while decreasing Al content and potential acidity of soils. No distinct effect of char application on grain yield of aerobic rice was observed. We believe that soil properties impacted by char application were inconsequential for rice yields because neither water, low pH, nor the availability of K or P were limiting factors for rice production. Rate of char above 16 Mg ha^(−1) reduced leaf area index and total shoot dry matter by 72 days after sowing. The number of panicles infected by rice blast decreased with increasing char rate. Increased dry matter beyond the remobilization capacity of the crop, and high number of panicles infected by rice blast were the likely cause of the lower grain yield observed when more than 60 kg N ha^(−1) was applied. The optimal rate of N was 46 kg ha^(−1) and resulted in a rice grain yield above 3 Mg ha^(−1).
Resumo:
The rise in population growth, as well as nutrient mining, has contributed to low agricultural productivity in Sub-Saharan Africa (SSA). A plethora of technologies to boost agricultural production have been developed but the dissemination of these agricultural innovations and subsequent uptake by smallholder farmers has remained a challenge. Scientists and philanthropists have adopted the Integrated Soil Fertility Management (ISFM) paradigm as a means to promote sustainable intensification of African farming systems. This comparative study aimed: 1) To assess the efficacy of Agricultural Knowledge and Innovation Systems (AKIS) in East (Kenya) and West (Ghana) Africa in the communication and dissemination of ISFM (Study I); 2) To investigate how specifically soil quality, and more broadly socio-economic status and institutional factors, influence farmer adoption of ISFM (Study II); and 3) To assess the effect of ISFM on maize yield and total household income of smallholder farmers (Study III). To address these aims, a mixed methodology approach was employed for study I. AKIS actors were subjected to social network analysis methods and in-depth interviews. Structured questionnaires were administered to 285 farming households in Tamale and 300 households in Kakamega selected using a stratified random sampling approach. There was a positive relationship between complete ISFM awareness among farmers and weak knowledge ties to both formal and informal actors at both research locations. The Kakamega AKIS revealed a relationship between complete ISFM awareness among farmers and them having strong knowledge ties to formal actors implying that further integration of formal actors with farmers’ local knowledge is crucial for the agricultural development progress. The structured questionnaire was also utilized to answer the query pertaining to study II. Soil samples (0-20 cm depth) were drawn from 322 (Tamale, Ghana) and 459 (Kakamega, Kenya) maize plots and analysed non-destructively for various soil fertility indicators. Ordinal regression modeling was applied to assess the cumulative adoption of ISFM. According to model estimates, soil carbon seemed to preclude farmers from intensifying input use in Tamale, whereas in Kakamega it spurred complete adoption. This varied response by farmers to soil quality conditions is multifaceted. From the Tamale perspective, it is consistent with farmers’ tendency to judiciously allocate scarce resources. Viewed from the Kakamega perspective, it points to a need for farmers here to intensify agricultural production in order to foster food security. In Kakamega, farmers with more acidic soils were more likely to adopt ISFM. Other household and farm-level factors necessary for ISFM adoption included off-farm income, livestock ownership, farmer associations, and market inter-linkages. Finally, in study III a counterfactual model was used to calculate the difference in outcomes (yield and household income) of the treatment (ISFM adoption) in order to estimate causal effects of ISFM adoption. Adoption of ISFM contributed to a yield increase of 16% in both Tamale and Kakamega. The innovation affected total household income only in Tamale, where ISFM adopters had an income gain of 20%. This may be attributable to the different policy contexts under which the two sets of farmers operate. The main recommendations underscored the need to: (1) improve the functioning of AKIS, (2) enhance farmer access to hybrid maize seed and credit, (3) and conduct additional multi-locational studies as farmers operate under varying contexts.