8 resultados para soil carbon determination

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beef production can be environmentally detrimental due in large part to associated enteric methane (CH4) production, which contributes to climate change. However, beef production in well-managed grazing systems can aid in soil carbon sequestration (SCS), which is often ignored when assessing beef production impacts on climate change. To estimate the carbon footprint and climate change mitigation potential of upper Midwest grass-finished beef production systems, we conducted a partial life cycle assessment (LCA) comparing two grazing management strategies: 1) a non-irrigated, lightly-stocked (1.0 AU/ha), high-density (100,000 kg LW/ha) system (MOB) and 2) an irrigated, heavily-stocked (2.5 AU/ha), low-density (30,000 kg LW/ha) system (IRG). In each system, April-born steers were weaned in November, winter-backgrounded for 6 months and grazed until their endpoint the following November, with average slaughter age of 19 months and a 295 kg hot carcass weight. As the basis for the LCA, we used two years of data from Lake City Research Center, Lake City, MI. We included greenhouse gas (GHG) emissions associated with enteric CH4, soil N2O and CH4 fluxes, alfalfa and mineral supplementation, and farm energy use. We also generated results from the LCA using the enteric emissions equations of the Intergovernmental Panel on Climate Change (IPCC). We evaluated a range of potential rates of soil carbon (C) loss or gain of up to 3 Mg C ha-1 yr-1. Enteric CH4 had the largest impact on total emissions, but this varied by grazing system. Enteric CH4 composed 62 and 66% of emissions for IRG and MOB, respectively, on a land basis. Both MOB and IRG were net GHG sources when SCS was not considered. Our partial LCA indicated that when SCS potential was included, each grazing strategy could be an overall sink. Sensitivity analyses indicated that soil in the MOB and IRG systems would need to sequester 1 and 2 Mg C ha-1 yr-1 for a net zero GHG footprint, respectively. IPCC model estimates for enteric CH4 were similar to field estimates for the MOB system, but were higher for the IRG system, suggesting that 0.62 Mg C ha-1 yr-1 greater SCS would be needed to offset the animal emissions in this case.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Maize production in smallholder farming systems in Kenya is largely limited by low soil fertility. As mineral fertilizer is expensive, green manuring using leguminous cover crops could be an alternative strategy for farmers to enhance farm productivity. However due to variability in soil type and crop management, the effects of green manure are likely to differ with farms. The objectives of this study were to evaluate Mucuna pruriens and Arachis pintoi on (i) biomass and nitrogen fixation (^15N natural abundance), (ii) soil carbon and nitrogen stocks and (iii) their effects on maize yields over two cropping seasons in Kakamega, Western Kenya. Mucuna at 6 weeks accumulated 1–1.3 Mg ha^{-1} of dry matter and 33–56 kg ha^{-1} nitrogen of which 70% was nitrogen derived from the atmosphere (Ndfa). Arachis after 12 months accumulated 2–2.7 Mg ha^{-1} of dry matter and 51–74 kg N ha^{-1} of which 52-63 % was from Ndfa. Soil carbon and nitrogen stocks at 0–15 cm depth were enhanced by 2-4 Mg C ha^{-1} and 0.3–1.0 Mg N ha^{-1} under Mucuna and Arachis fallow, irrespective of soil type. Maize yield increased by 0.5-2 Mg ha^{-1} in Mucuna and 0.5–3 Mg ha^{-1} in Arachis and the response was stronger on Nitisol than on Acrisol or Ferralsol. We concluded that leguminous cover crops seem promising in enhancing soil fertility and maize yields in Kenya, provided soil conditions and rainfall are suitable.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The rise in population growth, as well as nutrient mining, has contributed to low agricultural productivity in Sub-Saharan Africa (SSA). A plethora of technologies to boost agricultural production have been developed but the dissemination of these agricultural innovations and subsequent uptake by smallholder farmers has remained a challenge. Scientists and philanthropists have adopted the Integrated Soil Fertility Management (ISFM) paradigm as a means to promote sustainable intensification of African farming systems. This comparative study aimed: 1) To assess the efficacy of Agricultural Knowledge and Innovation Systems (AKIS) in East (Kenya) and West (Ghana) Africa in the communication and dissemination of ISFM (Study I); 2) To investigate how specifically soil quality, and more broadly socio-economic status and institutional factors, influence farmer adoption of ISFM (Study II); and 3) To assess the effect of ISFM on maize yield and total household income of smallholder farmers (Study III). To address these aims, a mixed methodology approach was employed for study I. AKIS actors were subjected to social network analysis methods and in-depth interviews. Structured questionnaires were administered to 285 farming households in Tamale and 300 households in Kakamega selected using a stratified random sampling approach. There was a positive relationship between complete ISFM awareness among farmers and weak knowledge ties to both formal and informal actors at both research locations. The Kakamega AKIS revealed a relationship between complete ISFM awareness among farmers and them having strong knowledge ties to formal actors implying that further integration of formal actors with farmers’ local knowledge is crucial for the agricultural development progress. The structured questionnaire was also utilized to answer the query pertaining to study II. Soil samples (0-20 cm depth) were drawn from 322 (Tamale, Ghana) and 459 (Kakamega, Kenya) maize plots and analysed non-destructively for various soil fertility indicators. Ordinal regression modeling was applied to assess the cumulative adoption of ISFM. According to model estimates, soil carbon seemed to preclude farmers from intensifying input use in Tamale, whereas in Kakamega it spurred complete adoption. This varied response by farmers to soil quality conditions is multifaceted. From the Tamale perspective, it is consistent with farmers’ tendency to judiciously allocate scarce resources. Viewed from the Kakamega perspective, it points to a need for farmers here to intensify agricultural production in order to foster food security. In Kakamega, farmers with more acidic soils were more likely to adopt ISFM. Other household and farm-level factors necessary for ISFM adoption included off-farm income, livestock ownership, farmer associations, and market inter-linkages. Finally, in study III a counterfactual model was used to calculate the difference in outcomes (yield and household income) of the treatment (ISFM adoption) in order to estimate causal effects of ISFM adoption. Adoption of ISFM contributed to a yield increase of 16% in both Tamale and Kakamega. The innovation affected total household income only in Tamale, where ISFM adopters had an income gain of 20%. This may be attributable to the different policy contexts under which the two sets of farmers operate. The main recommendations underscored the need to: (1) improve the functioning of AKIS, (2) enhance farmer access to hybrid maize seed and credit, (3) and conduct additional multi-locational studies as farmers operate under varying contexts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Landwirtschaft spielt eine zentrale Rolle im Erdsystem. Sie trägt durch die Emission von CO2, CH4 und N2O zum Treibhauseffekt bei, kann Bodendegradation und Eutrophierung verursachen, regionale Wasserkreisläufe verändern und wird außerdem stark vom Klimawandel betroffen sein. Da all diese Prozesse durch die zugrunde liegenden Nährstoff- und Wasserflüsse eng miteinander verknüpft sind, sollten sie in einem konsistenten Modellansatz betrachtet werden. Dennoch haben Datenmangel und ungenügendes Prozessverständnis dies bis vor kurzem auf der globalen Skala verhindert. In dieser Arbeit wird die erste Version eines solchen konsistenten globalen Modellansatzes präsentiert, wobei der Schwerpunkt auf der Simulation landwirtschaftlicher Erträge und den resultierenden N2O-Emissionen liegt. Der Grund für diese Schwerpunktsetzung liegt darin, dass die korrekte Abbildung des Pflanzenwachstums eine essentielle Voraussetzung für die Simulation aller anderen Prozesse ist. Des weiteren sind aktuelle und potentielle landwirtschaftliche Erträge wichtige treibende Kräfte für Landnutzungsänderungen und werden stark vom Klimawandel betroffen sein. Den zweiten Schwerpunkt bildet die Abschätzung landwirtschaftlicher N2O-Emissionen, da bislang kein prozessbasiertes N2O-Modell auf der globalen Skala eingesetzt wurde. Als Grundlage für die globale Modellierung wurde das bestehende Agrarökosystemmodell Daycent gewählt. Neben der Schaffung der Simulationsumgebung wurden zunächst die benötigten globalen Datensätze für Bodenparameter, Klima und landwirtschaftliche Bewirtschaftung zusammengestellt. Da für Pflanzzeitpunkte bislang keine globale Datenbasis zur Verfügung steht, und diese sich mit dem Klimawandel ändern werden, wurde eine Routine zur Berechnung von Pflanzzeitpunkten entwickelt. Die Ergebnisse zeigen eine gute Übereinstimmung mit Anbaukalendern der FAO, die für einige Feldfrüchte und Länder verfügbar sind. Danach wurde das Daycent-Modell für die Ertragsberechnung von Weizen, Reis, Mais, Soja, Hirse, Hülsenfrüchten, Kartoffel, Cassava und Baumwolle parametrisiert und kalibriert. Die Simulationsergebnisse zeigen, dass Daycent die wichtigsten Klima-, Boden- und Bewirtschaftungseffekte auf die Ertragsbildung korrekt abbildet. Berechnete Länderdurchschnitte stimmen gut mit Daten der FAO überein (R2 = 0.66 für Weizen, Reis und Mais; R2 = 0.32 für Soja), und räumliche Ertragsmuster entsprechen weitgehend der beobachteten Verteilung von Feldfrüchten und subnationalen Statistiken. Vor der Modellierung landwirtschaftlicher N2O-Emissionen mit dem Daycent-Modell stand eine statistische Analyse von N2O-und NO-Emissionsmessungen aus natürlichen und landwirtschaftlichen Ökosystemen. Die als signifikant identifizierten Parameter für N2O (Düngemenge, Bodenkohlenstoffgehalt, Boden-pH, Textur, Feldfrucht, Düngersorte) und NO (Düngemenge, Bodenstickstoffgehalt, Klima) entsprechen weitgehend den Ergebnissen einer früheren Analyse. Für Emissionen aus Böden unter natürlicher Vegetation, für die es bislang keine solche statistische Untersuchung gab, haben Bodenkohlenstoffgehalt, Boden-pH, Lagerungsdichte, Drainierung und Vegetationstyp einen signifikanten Einfluss auf die N2O-Emissionen, während NO-Emissionen signifikant von Bodenkohlenstoffgehalt und Vegetationstyp abhängen. Basierend auf den daraus entwickelten statistischen Modellen betragen die globalen Emissionen aus Ackerböden 3.3 Tg N/y für N2O, und 1.4 Tg N/y für NO. Solche statistischen Modelle sind nützlich, um Abschätzungen und Unsicherheitsbereiche von N2O- und NO-Emissionen basierend auf einer Vielzahl von Messungen zu berechnen. Die Dynamik des Bodenstickstoffs, insbesondere beeinflusst durch Pflanzenwachstum, Klimawandel und Landnutzungsänderung, kann allerdings nur durch die Anwendung von prozessorientierten Modellen berücksichtigt werden. Zur Modellierung von N2O-Emissionen mit dem Daycent-Modell wurde zunächst dessen Spurengasmodul durch eine detailliertere Berechnung von Nitrifikation und Denitrifikation und die Berücksichtigung von Frost-Auftau-Emissionen weiterentwickelt. Diese überarbeitete Modellversion wurde dann an N2O-Emissionsmessungen unter verschiedenen Klimaten und Feldfrüchten getestet. Sowohl die Dynamik als auch die Gesamtsummen der N2O-Emissionen werden befriedigend abgebildet, wobei die Modelleffizienz für monatliche Mittelwerte zwischen 0.1 und 0.66 für die meisten Standorte liegt. Basierend auf der überarbeiteten Modellversion wurden die N2O-Emissionen für die zuvor parametrisierten Feldfrüchte berechnet. Emissionsraten und feldfruchtspezifische Unterschiede stimmen weitgehend mit Literaturangaben überein. Düngemittelinduzierte Emissionen, die momentan vom IPCC mit 1.25 +/- 1% der eingesetzten Düngemenge abgeschätzt werden, reichen von 0.77% (Reis) bis 2.76% (Mais). Die Summe der berechneten Emissionen aus landwirtschaftlichen Böden beträgt für die Mitte der 1990er Jahre 2.1 Tg N2O-N/y, was mit den Abschätzungen aus anderen Studien übereinstimmt.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Judged by their negative nutrient balances, low soil cover and low productivity, the predominant agro-pastoral farming systems in the Sudano-Sahelian zone of West Africa are highly unsustainable for crop production intensification. With kaolinite as the main clay type, the cation exchange capacity of the soils in this region, often less than 1 cmol_c kg^-1 soil, depends heavily on the organic carbon (Corg) content. However, due to low carbon sequestration and to the microbe, termite and temperature-induced rapid turnover rates of organic material in the present land-use systems, Corg contents of the topsoil are very low, ranging between 1 and 8 g kg^-1 in most soils. For sustainable food production, the availability of phosphorus (P) and nitrogen (N) has to be increased considerably in combination with an improvement in soil physical properties. Therefore, the adoption of innovative management options that help to stop or even reverse the decline in Corg typically observed after cultivating bush or rangeland is of utmost importance. To maintain food production for a rapidly growing population, targeted applications of mineral fertilisers and the effective recycling of organic amendments as crop residues and manure are essential. Any increase in soil cover has large effects in reducing topsoil erosion by wind and water and favours the accumulation of wind-blown dust high in bases which in turn improves P availability. In the future decision support systems, based on GIS, modelling and simulation should be used to combine (i) available fertiliser response data from on-station and on-farm research, (ii) results on soil productivity restoration with the application of mineral and organic amendments and (iii) our present understanding of the cause-effect relationships governing the prevailing soil degradation processes. This will help to predict the effectiveness of regionally differentiated soil fertility management approaches to maintain or even increase soil Corg levels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of renewable primary products as co-substrate or single substrate for biogas production has increased consistently over the last few years. Maize silage is the preferential energy crop used for fermentation due to its high methane (CH4) yield per hectare. Equally, the by-product, namely biogas slurry (BS), is used with increasing frequency as organic fertilizer to return nutrients to the soil and to maintain or increase the organic matter stocks and soil fertility. Studies concerning the application of energy crop-derived BS on the carbon (C) and nitrogen (N) mineralization dynamics are scarce. Thus, this thesis focused on the following objectives: I) The determination of the effects caused by rainfall patterns on the C and N dynamics from two contrasting organic fertilizers, namely BS from maize silage and composted cattle manure (CM), by monitoring emissions of nitrous oxide (N2O), carbon dioxide (CO2) and CH4 as well as leaching losses of C and N. II) The investigation of the impact of differences in soil moisture content after the application of BS and temperature on gaseous emissions (CO2, N2O and CH4) and leaching of C and N compounds. III) A comparison of BS properties obtained from biogas plants with different substrate inputs and operating parameters and their effect on C and N dynamics after application to differently textured soils with varying application rates and water contents. For the objectives I) and II) two experiments (experiment I and II) using undisturbed soil cores of a Haplic Luvisol were carried out. Objective III) was studied on a third experiment (experiment III) with disturbed soil samples. During experiment I three rainfall patterns were implemented including constant irrigation, continuous irrigation with periodic heavy rainfall events, and partial drying with rewetting periods. Biogas slurry and CM were applied at a rate of 100 kg N ha-1. During experiment II constant irrigation and an irrigation pattern with partial drying with rewetting periods were carried out at 13.5°C and 23.5°C. The application of BS took place either directly before a rewetting period or one week after the rewetting period stopped. Experiment III included two soils of different texture which were mixed with ten BS’s originating from ten different biogas plants. Treatments included low, medium and high BS-N application rates and water contents ranging from 50% to 100% of water holding capacity (WHC). Experiment I and II showed that after the application of BS cumulative N2O emissions were 4 times (162 mg N2O-N m-2) higher compared to the application of CM caused by a higher content of mineral N (Nmin) in the form of ammonium (NH4+) in the BS. The cumulative emissions of CO2, however, were on the same level for both fertilizers indicating similar amounts of readily available C after composting and fermentation of organic material. Leaching losses occurred predominantly in the mineral form of nitrate (NO3-) and were higher in BS amended soils (9 mg NO3--N m-2) compared to CM amended soils (5 mg NO3--N m-2). The rainfall pattern in experiment I and II merely affected the temporal production of C and N emissions resulting in reduced CO2 and enhanced N2O emissions during stronger irrigation events, but showed no effect on the cumulative emissions. Overall, a significant increase of CH4 consumption under inconstant irrigation was found. The time of fertilization had no effect on the overall C and N dynamics. Increasing temperature from 13.5°C to 23.5°C enhanced the CO2 and N2O emissions by a factor of 1.7 and 3.7, respectively. Due to the increased microbial activity with increasing temperature soil respiration was enhanced. This led to decreasing oxygen (O2) contents which in turn promoted denitrification in soil due to the extension of anaerobic microsites. Leaching losses of NO3- were also significantly affected by increasing temperature whereas the consumption of CH4 was not affected. The third experiment showed that the input materials of biogas plants affected the properties of the resulting BS. In particular the contents of DM and NH4+ were determined by the amount of added plant biomass and excrement-based biomass, respectively. Correlations between BS properties and CO2 or N2O emissions were not detected. Solely the ammonia (NH3) emissions showed a positive correlation with NH4+ content in BS as well as a negative correlation with the total C (Ct) content. The BS-N application rates affected the relative CO2 emissions (% of C supplied with BS) when applied to silty soil as well as the relative N2O emissions (% of N supplied with BS) when applied to sandy soil. The impacts on the C and N dynamics induced by BS application were exceeded by the differences induced by soil texture. Presumably, due to the higher clay content in silty soils, organic matter was stabilized by organo-mineral interactions and NH4+ was adsorbed at the cation exchange sites. Different water contents induced highest CO2 emissions and therefore optimal conditions for microbial activity at 75% of WHC in both soils. Cumulative nitrification was also highest at 75% and 50% of WHC whereas the relative N2O emissions increased with water content and showed higher N2O losses in sandy soils. In summary it can be stated that the findings of the present thesis confirmed the high fertilizer value of BS’s, caused by high concentrations of NH4+ and labile organic compounds such as readily available carbon. These attributes of BS’s are to a great extent independent of the input materials of biogas plants. However, considerably gaseous and leaching losses of N may occur especially at high moisture contents. The emissions of N2O after field application corresponded with those of animal slurries.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two-third of the terrestrial C is stored in soils, and more than 50% of soil organic C (SOC) is stored in subsoils from 30 – 100 cm. Hence, subsoil is important as a source or sink for CO2 in the global carbon cycle. Especially the stable organic carbon (OC) is stored in subsoil, as several studies have shown that subsoil OC is of a higher average age than topsoil OC. However, there is still a lack of knowledge regarding the mechanisms of C sequestration and C turnover in subsoil. Three main factors are discussed, which possibly reduce carbon turnover rates in subsoil: Resource limitation, changes in the microbial community, and changes in gas conditions. The experiments conducted in this study, which aimed to elucidate the importance of the mentioned factors, focused on two neighbouring arable sites, with depth profiles differing in SOC stocks: One Colluvic Cambisol (Cam) with high SOC contents (8-12 g kg-1) throughout the profile and one Haplic Luvisol (Luv) with low SOC contents (3-4 g kg-1) below 30 cm depth. The first experiment was designed to gain more knowledge regarding the microbial community and its influence on carbon sequestration in subsoil. Soil samples were taken at four different depths on the two sites. Microbial biomass C (MBC) was determined to identify depth gradients in relation to the natural C availability. Bacterial and fungal residues as well as ergosterol were determined to quantify changes in the in the microbial community composition. Multi-substrate-induced-respiration (MSIR) was used to identify shifts in functional diversity of the microbial community. The MSIR revealed that substrate use in subsoil differed significantly from that in topsoil and also differed highly between the two subsoils, indicating a strong influence of resource limitations on microbial substrate use. Amino sugar analysis and the ratio of ergosterol to microbial biomass C showed that fungal dominance decreased with depth. The results clearly demonstrated that microbial parameters changed with depth according to substrate availability. The second experiment was an incubation experiment using subsoil gas conditions with and without the addition of C4 plant residues. Soil samples were taken from topsoil and subsoil of the two sites. SOC losses during the incubation, were not influenced by the subsoil gas conditions. Plant-derived C losses were generally stronger in the Cam (7.5 mg g-1), especially at subsoil gas conditions, than in the Luv (7.0 mg g-1). Subsoil gas conditions had no general effects on microbial measures with and without plant residue addition. However, the contribution of plant-derived MBC to total MBC was significantly reduced at subsoil gas conditions. This lead to the conclusion that subsoil gas conditions alter the metabolism of microorganisms but not the degradation of added plant residues is general. The third experiment was a field experiment carried out for two years. Mesh bags containing original soil material and maize root residues (C4 plant) were buried at three different depths at the two sites. The recovery of the soilbags took place 12, 18, and 24 months after burial. We determined the effects of these treatments on SOC, density fractions, and MBC. The mean residence time for maize-derived C was similar at all depths and both sites (403 d). MBC increased to a similar extent (2.5 fold) from the initial value to maximum value. This increase relied largely on the added maize root residues. However, there were clear differences visible in terms of the substrate use efficiency, which decreased with depth and was lower in the Luv than in the Cam. Hence freshly added plant material is highly accessible to microorganisms in subsoil and therefore equally degraded at both sites and depths, but its metabolic use was determined by the legacy of soil properties. These findings provide strong evidence that resource availability from autochthonous SOM as well as from added plant residues have a strong influence on the microbial community and its use of different substrates. However, under all of the applied conditions there was no evidence that complex substrates, i.e. plant residues, were less degraded in subsoil than in topsoil.