4 resultados para smoothing techniques
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Sowohl die Ressourcenproblematik als auch die drohenden Ausmaße der Klimaänderung lassen einen Umstieg auf andere Energiequellen langfristig unausweichlich erscheinen und mittelfristig als dringend geboten. Unabhängig von der Frage, auf welchem Niveau sich der Energiebedarf stabilisieren lässt, bleibt dabei zu klären, welche Möglichkeiten sich aus technischer und wirtschaftlicher Sicht in Zukunft zur Deckung unseres Energiebedarfs anbieten. Eine aussichtsreiche Option besteht in der Nutzung regenerativer Energien in ihrer ganzen Vielfalt. Die Arbeit "Szenarien zur zukünftigen Stromversorgung, kostenoptimierte Variationen zur Versorgung Europas und seiner Nachbarn mit Strom aus erneuerbaren Energien" konzentriert sich mit der Stromversorgung auf einen Teilaspekt der Energieversorgung, der zunehmend an Wichtigkeit gewinnt und als ein Schlüssel zur nachhaltigen Energieversorgung interpretiert werden kann. Die Stromversorgung ist heute weltweit für etwa die Hälfte des anthropogenen CO2-Ausstoßes verantwortlich. In dieser Arbeit wurden anhand verschiedener Szenarien Möglichkeiten einer weitgehend CO2–neutralen Stromversorgung für Europa und seine nähere Umgebung untersucht, wobei das Szenariogebiet etwa 1,1 Mrd. Einwohner und einen Stromverbrauch von knapp 4000 TWh/a umfasst. Dabei wurde untersucht, wie die Stromversorgung aufgebaut sein sollte, damit sie möglichst kostengünstig verwirklicht werden kann. Diese Frage wurde beispielsweise für Szenarien untersucht, in denen ausschließlich heute marktverfügbare Techniken berücksichtigt wurden. Auch der Einfluss der Nutzung einiger neuer Technologien, die bisher noch in Entwicklung sind, auf die optimale Gestaltung der Stromversorgung, wurde anhand einiger Beispiele untersucht. Die Konzeption der zukünftigen Stromversorgung sollte dabei nach Möglichkeit objektiven Kriterien gehorchen, die auch die Vergleichbarkeit verschiedener Versorgungsansätze gewährleisten. Dafür wurde ein Optimierungsansatz gewählt, mit dessen Hilfe sowohl bei der Konfiguration als auch beim rechnerischen Betrieb des Stromversorgungssystems weitgehend auf subjektive Entscheidungsprozesse verzichtet werden kann. Die Optimierung hatte zum Ziel, für die definierte möglichst realitätsnahe Versorgungsaufgabe den idealen Kraftwerks- und Leitungspark zu bestimmen, der eine kostenoptimale Stromversorgung gewährleistet. Als Erzeugungsoptionen werden dabei u.a. die Nutzung Regenerativer Energien durch Wasserkraftwerke, Windenergiekonverter, Fallwindkraftwerke, Biomassekraftwerke sowie solare und geothermische Kraftwerke berücksichtigt. Abhängig von den gewählten Randbedingungen ergaben sich dabei unterschiedliche Szenarien. Das Ziel der Arbeit war, mit Hilfe unterschiedlicher Szenarien eine breite Basis als Entscheidungsgrundlage für zukünftige politische Weichenstellungen zu schaffen. Die Szenarien zeigen Optionen für eine zukünftige Gestaltung der Stromversorgung auf, machen Auswirkungen verschiedener – auch politischer – Rahmenbedingungen deutlich und stellen so die geforderte Entscheidungsgrundlage bereit. Als Grundlage für die Erstellung der Szenarien mussten die verschiedenen Potentiale erneuerbarer Energien in hoher zeitlicher und räumlicher Auflösung ermittelt werden, mit denen es erstmals möglich war, die Fragen einer großräumigen regenerativen Stromversorgung ohne ungesicherte Annahmen anhand einer verlässlichen Datengrundlage anzugehen. Auch die Charakteristika der verschiedensten Energiewandlungs- und Transportsysteme mussten studiert werden und sind wie deren Kosten und die verschiedenen Potentiale in der vorliegenden Arbeit ausführlich diskutiert. Als Ausgangsszenario und Bezugspunkt dient ein konservatives Grundszenario. Hierbei handelt es sich um ein Szenario für eine Stromversorgung unter ausschließlicher Nutzung erneuerbarer Energien, die wiederum ausschließlich auf heute bereits entwickelte Technologien zurückgreift und dabei für alle Komponenten die heutigen Kosten zugrundelegt. Dieses Grundszenario ist dementsprechend auch als eine Art konservative Worst-Case-Abschätzung für unsere Zukunftsoptionen bei der regenerativen Stromversorgung zu verstehen. Als Ergebnis der Optimierung basiert die Stromversorgung beim Grundszenario zum größten Teil auf der Stromproduktion aus Windkraft. Biomasse und schon heute bestehende Wasserkraft übernehmen den überwiegenden Teil der Backup-Aufgaben innerhalb des – mit leistungsstarker HGÜ (Hochspannungs–Gleichstrom–Übertragung) verknüpften – Stromversorgungsgebiets. Die Stromgestehungskosten liegen mit 4,65 €ct / kWh sehr nahe am heute Üblichen. Sie liegen niedriger als die heutigen Preisen an der Strombörse. In allen Szenarien – außer relativ teuren, restriktiv ”dezentralen” unter Ausschluss großräumig länderübergreifenden Stromtransports – spielt der Stromtransport eine wichtige Rolle. Er wird genutzt, um Ausgleichseffekte bei der dargebotsabhängigen Stromproduktion aus erneuerbaren Quellen zu realisieren, gute kostengünstige Potentiale nutzbar zu machen und um die Speicherwasserkraft sowie die dezentral genutzte Biomasse mit ihrer Speicherfähigkeit für großräumige Backup-Aufgaben zu erschließen. Damit erweist sich der Stromtransport als einer der Schlüssel zu einer kostengünstigen Stromversorgung. Dies wiederum kann als Handlungsempfehlung bei politischen Weichenstellungen interpretiert werden, die demnach gezielt auf internationale Kooperation im Bereich der Nutzung erneuerbarer Energien setzen und insbesondere den großräumigen Stromtransport mit einbeziehen sollten. Die Szenarien stellen detaillierte und verlässliche Grundlagen für wichtige politische und technologische Zukunftsentscheidungen zur Verfügung. Sie zeigen, dass bei internationaler Kooperation selbst bei konservativen Annahmen eine rein regenerative Stromversorgung möglich ist, die wirtschaftlich ohne Probleme zu realisieren wäre und verweisen den Handlungsbedarf in den Bereich der Politik. Eine wesentliche Aufgabe der Politik läge darin, die internationale Kooperation zu organisieren und Instrumente für eine Umgestaltung der Stromversorgung zu entwickeln. Dabei kann davon ausgegangen werden, dass nicht nur ein sinnvoller Weg zu einer CO2–neutralen Stromversorgung beschritten würde, sondern sich darüber hinaus ausgezeichnete Entwicklungsperspektiven für die ärmeren Nachbarstaaten der EU und Europas eröffnen.
Resumo:
We present a new algorithm called TITANIC for computing concept lattices. It is based on data mining techniques for computing frequent itemsets. The algorithm is experimentally evaluated and compared with B. Ganter's Next-Closure algorithm.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.