3 resultados para robotics manipulators
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Cooperative behaviour of agents within highly dynamic and nondeterministic domains is an active field of research. In particular establishing highly responsive teamwork, where agents are able to react on dynamic changes in the environment while facing unreliable communication and sensory noise, is an open problem. Moreover, modelling such responsive, cooperative behaviour is difficult. In this work, we specify a novel model for cooperative behaviour geared towards highly dynamic domains. In our approach, agents estimate each other’s decision and correct these estimations once they receive contradictory information. We aim at a comprehensive approach for agent teamwork featuring intuitive modelling capabilities for multi-agent activities, abstractions over activities and agents, and a clear operational semantic for the new model. This work encompasses a complete specification of the new language, ALICA.
Resumo:
This thesis investigates a method for human-robot interaction (HRI) in order to uphold productivity of industrial robots like minimization of the shortest operation time, while ensuring human safety like collision avoidance. For solving such problems an online motion planning approach for robotic manipulators with HRI has been proposed. The approach is based on model predictive control (MPC) with embedded mixed integer programming. The planning strategies of the robotic manipulators mainly considered in the thesis are directly performed in the workspace for easy obstacle representation. The non-convex optimization problem is approximated by a mixed-integer program (MIP). It is further effectively reformulated such that the number of binary variables and the number of feasible integer solutions are drastically decreased. Safety-relevant regions, which are potentially occupied by the human operators, can be generated online by a proposed method based on hidden Markov models. In contrast to previous approaches, which derive predictions based on probability density functions in the form of single points, such as most likely or expected human positions, the proposed method computes safety-relevant subsets of the workspace as a region which is possibly occupied by the human at future instances of time. The method is further enhanced by combining reachability analysis to increase the prediction accuracy. These safety-relevant regions can subsequently serve as safety constraints when the motion is planned by optimization. This way one arrives at motion plans that are safe, i.e. plans that avoid collision with a probability not less than a predefined threshold. The developed methods have been successfully applied to a developed demonstrator, where an industrial robot works in the same space as a human operator. The task of the industrial robot is to drive its end-effector according to a nominal sequence of grippingmotion-releasing operations while no collision with a human arm occurs.
Resumo:
In the past years, we could observe a significant amount of new robotic systems in science, industry, and everyday life. To reduce the complexity of these systems, the industry constructs robots that are designated for the execution of a specific task such as vacuum cleaning, autonomous driving, observation, or transportation operations. As a result, such robotic systems need to combine their capabilities to accomplish complex tasks that exceed the abilities of individual robots. However, to achieve emergent cooperative behavior, multi-robot systems require a decision process that copes with the communication challenges of the application domain. This work investigates a distributed multi-robot decision process, which addresses unreliable and transient communication. This process composed by five steps, which we embedded into the ALICA multi-agent coordination language guided by the PROViDE negotiation middleware. The first step encompasses the specification of the decision problem, which is an integral part of the ALICA implementation. In our decision process, we describe multi-robot problems by continuous nonlinear constraint satisfaction problems. The second step addresses the calculation of solution proposals for this problem specification. Here, we propose an efficient solution algorithm that integrates incomplete local search and interval propagation techniques into a satisfiability solver, which forms a satisfiability modulo theories (SMT) solver. In the third decision step, the PROViDE middleware replicates the solution proposals among the robots. This replication process is parameterized with a distribution method, which determines the consistency properties of the proposals. In a fourth step, we investigate the conflict resolution. Therefore, an acceptance method ensures that each robot supports one of the replicated proposals. As we integrated the conflict resolution into the replication process, a sound selection of the distribution and acceptance methods leads to an eventual convergence of the robot proposals. In order to avoid the execution of conflicting proposals, the last step comprises a decision method, which selects a proposal for implementation in case the conflict resolution fails. The evaluation of our work shows that the usage of incomplete solution techniques of the constraint satisfaction solver outperforms the runtime of other state-of-the-art approaches for many typical robotic problems. We further show by experimental setups and practical application in the RoboCup environment that our decision process is suitable for making quick decisions in the presence of packet loss and delay. Moreover, PROViDE requires less memory and bandwidth compared to other state-of-the-art middleware approaches.