3 resultados para river basin catchment area

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Upper Blue Nile River Basin (UBNRB) located in the western part of Ethiopia, between 7° 45’ and 12° 45’N and 34° 05’ and 39° 45’E has a total area of 174962 km2 . More than 80% of the population in the basin is engaged in agricultural activities. Because of the particularly dry climate in the basin, likewise to most other regions of Ethiopia, the agricultural productivity depends to a very large extent on the occurrence of the seasonal rains. This situation makes agriculture highly vulnerable to the impact of potential climate hazards which are about to inflict Africa as a whole and Ethiopia in particular. To analyze these possible impacts of future climate change on the water resources in the UBNRB, in the first part of the thesis climate projection for precipitation, minimum and maximum temperatures in the basin, using downscaled predictors from three GCMs (ECHAM5, GFDL21 and CSIRO-MK3) under SRES scenarios A1B and A2 have been carried out. The two statistical downscaling models used are SDSM and LARS-WG, whereby SDSM is used to downscale ECHAM5-predictors alone and LARS-WG is applied in both mono-model mode with predictors from ECHAM5 and in multi-model mode with combined predictors from ECHAM5, GFDL21 and CSIRO-MK3. For the calibration/validation of the downscaled models, observed as well as NCEP climate data in the 1970 - 2000 reference period is used. The future projections are made for two time periods; 2046-2065 (2050s) and 2081-2100 (2090s). For the 2050s future time period the downscaled climate predictions indicate rise of 0.6°C to 2.7°C for the seasonal maximum temperatures Tmax, and of 0.5°C to 2.44°C for the minimum temperatures Tmin. Similarly, during the 2090s the seasonal Tmax increases by 0.9°C to 4.63°C and Tmin by 1°C to 4.6°C, whereby these increases are generally higher for the A2 than for the A1B scenario. For most sub-basins of the UBNRB, the predicted changes of Tmin are larger than those of Tmax. Meanwhile, for the precipitation, both downscaling tools predict large changes which, depending on the GCM employed, are such that the spring and summer seasons will be experiencing decreases between -36% to 1% and the autumn and winter seasons an increase of -8% to 126% for the two future time periods, regardless of the SRES scenario used. In the second part of the thesis the semi-distributed, physically based hydrologic model, SWAT (Soil Water Assessment Tool), is used to evaluate the impacts of the above-predicted future climate change on the hydrology and water resources of the UBNRB. Hereby the downscaled future predictors are used as input in the SWAT model to predict streamflow of the Upper Blue Nile as well as other relevant water resources parameter in the basin. Calibration and validation of the streamflow model is done again on 1970-2000 measured discharge at the outlet gage station Eldiem, whereby the most sensitive out the numerous “tuneable” calibration parameters in SWAT have been selected by means of a sophisticated sensitivity analysis. Consequently, a good calibration/validation model performance with a high NSE-coefficient of 0.89 is obtained. The results of the future simulations of streamflow in the basin, using both SDSM- and LARS-WG downscaled output in SWAT reveal a decline of -10% to -61% of the future Blue Nile streamflow, And, expectedly, these obviously adverse effects on the future UBNRB-water availibiliy are more exacerbated for the 2090’s than for the 2050’s, regardless of the SRES.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wenn man die Existenz von physikalischen Mechanismen ignoriert, die für die Struktur hydrologischer Zeitreihen verantwortlich sind, kann das zu falschen Schlussfolgerungen bzgl. des Vorhandenseins möglicher Gedächtnis (memory) -Effekte, d.h. von Persistenz, führen. Die hier vorgelegte Doktorarbeit spürt der niedrigfrequenten klimatischen Variabilität innerhalb den hydrologischen Zyklus nach und bietet auf dieser "Reise" neue Einsichten in die Transformation der charakteristischen Eigenschaften von Zeitreihen mit einem Langzeitgedächtnis. Diese Studie vereint statistische Methoden der Zeitreihenanalyse mit empirisch-basierten Modelltechniken, um operative Modelle zu entwickeln, die in der Lage sind (1) die Dynamik des Abflusses zu modellieren, (2) sein zukünftiges Verhalten zu prognostizieren und (3) die Abflusszeitreihen an unbeobachteten Stellen abzuschätzen. Als solches präsentiert die hier vorgelegte Dissertation eine ausführliche Untersuchung zu den Ursachen der niedrigfrequenten Variabilität von hydrologischen Zeitreihen im deutschen Teil des Elbe-Einzugsgebietes, den Folgen dieser Variabilität und den physikalisch basierten Reaktionen von Oberflächen- und Grundwassermodellen auf die niedrigfrequenten Niederschlags-Eingangsganglinien. Die Doktorarbeit gliedert sich wie folgt: In Kapitel 1 wird als Hintergrundinformation das Hurst Phänomen beschrieben und ein kurzer Rückblick auf diesbezügliche Studien gegeben. Das Kapitel 2 diskutiert den Einfluss der Präsenz von niedrigfrequenten periodischen Zeitreihen auf die Zuverlässigkeit verschiedener Hurst-Parameter-Schätztechniken. Kapitel 3 korreliert die niedrigfrequente Niederschlagsvariabilität mit dem Index der Nord-Atlantischen Ozillations (NAO). Kapitel 4-6 sind auf den deutschen Teil des Elbe-Einzugsgebietes fokussiert. So werden in Kapitel 4 die niedrigfrequenten Variabilitäten der unterschiedlichen hydro-meteorologischen Parameter untersucht und es werden Modelle beschrieben, die die Dynamik dieser Niedrigfrequenzen und deren zukünftiges Verhalten simulieren. Kapitel 5 diskutiert die mögliche Anwendung der Ergebnisse für die charakteristische Skalen und die Verfahren der Analyse der zeitlichen Variabilität auf praktische Fragestellungen im Wasserbau sowie auf die zeitliche Bestimmung des Gebiets-Abflusses an unbeobachteten Stellen. Kapitel 6 verfolgt die Spur der Niedrigfrequenzzyklen im Niederschlag durch die einzelnen Komponenten des hydrologischen Zyklus, nämlich dem Direktabfluss, dem Basisabfluss, der Grundwasserströmung und dem Gebiets-Abfluss durch empirische Modellierung. Die Schlussfolgerungen werden im Kapitel 7 präsentiert. In einem Anhang werden technische Einzelheiten zu den verwendeten statistischen Methoden und die entwickelten Software-Tools beschrieben.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous studies have proven an effect of a probable climate change on the hydrosphere’s different subsystems. In the 21st century global and regional redistribution of water has to be expected and it is very likely that extreme weather phenomenon will occur more frequently. From a global view the flood situation will exacerbate. In contrast to these discoveries the classical approach of flood frequency analysis provides terms like “mean flood recurrence interval”. But for this analysis to be valid there is a need for the precondition of stationary distribution parameters which implies that the flood frequencies are constant in time. Newer approaches take into account extreme value distributions with time-dependent parameters. But the latter implies a discard of the mentioned old terminology that has been used up-to-date in engineering hydrology. On the regional scale climate change affects the hydrosphere in various ways. So, the question appears to be whether in central Europe the classical approach of flood frequency analysis is not usable anymore and whether the traditional terminology should be renewed. In the present case study hydro-meteorological time series of the Fulda catchment area (6930 km²), upstream of the gauging station Bonaforth, are analyzed for the time period 1960 to 2100. At first a distributed catchment area model (SWAT2005) is build up, calibrated and finally validated. The Edertal reservoir is regulated as well by a feedback control of the catchments output in case of low water. Due to this intricacy a special modeling strategy has been necessary: The study area is divided into three SWAT basin models and an additional physically-based reservoir model is developed. To further improve the streamflow predictions of the SWAT model, a correction by an artificial neural network (ANN) has been tested successfully which opens a new way to improve hydrological models. With this extension the calibration and validation of the SWAT model for the Fulda catchment area is improved significantly. After calibration of the model for the past 20th century observed streamflow, the SWAT model is driven by high resolution climate data of the regional model REMO using the IPCC scenarios A1B, A2, and B1, to generate future runoff time series for the 21th century for the various sub-basins in the study area. In a second step flood time series HQ(a) are derived from the 21st century runoff time series (scenarios A1B, A2, and B1). Then these flood projections are extensively tested with regard to stationarity, homogeneity and statistical independence. All these tests indicate that the SWAT-predicted 21st-century trends in the flood regime are not significant. Within the projected time the members of the flood time series are proven to be stationary and independent events. Hence, the classical stationary approach of flood frequency analysis can still be used within the Fulda catchment area, notwithstanding the fact that some regional climate change has been predicted using the IPCC scenarios. It should be noted, however, that the present results are not transferable to other catchment areas. Finally a new method is presented that enables the calculation of extreme flood statistics, even if the flood time series is non-stationary and also if the latter exhibits short- and longterm persistence. This method, which is called Flood Series Maximum Analysis here, enables the calculation of maximum design floods for a given risk- or safety level and time period.