2 resultados para relaxation
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Calculations of the level width \gamma( L_1) and the f_12 and f_13 Coster-Kronig yields for atomic zinc have been performed with Dirac-Fock wave functions. For \gamma(L_1), a large deviation between theory and evaluated data exists. We include the incomplete orthogonality of the electron orbitals as well as the interchannel interaction of the decaying states. Orbital relaxation reduces the total rates in all groups of the electron-emission spectrum by about 10-20 %. Different, however, is the effect of the continuum interaction. The L_1-L_23X Coster-Kronig part of the spectrum is definitely reduced in its intensity, whereas the MM and MN spectra are slightly enhanced. This results in a reduction of Coster-Kronig yields, where for medium and heavy elements considerable discrepancies have been found in comparison to relativistic theory. Briefly, we discuss the consequences of our calculations for heavier elements.
Resumo:
Relativistic Auger rates for the 2p spectra of Mg-like ions have been calculated in the atomic range 13 < Z < 36. We used the multiconfiguration Dirac-Fock method but beyond a simple frozen-orbital approach we include also relaxation for the bound electrons and the interchannel interaction between the continuum states. Both effects may alter the individual transition rates remarkably. This is analysed for a few selected states within the isoelectronic sequence. Weak transitions within the 2p spectra can be changed by an order of magnitude because of the continuum coupling. The influence of both effects for higher-Z ions is reduced but still remain visible.