3 resultados para potentials
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Multiconfiguration relativistic Dirac-Fock (MCDF) values have been computed for the first four ionization potentials (IPs) of element 104 (unnilquadium) and of the other group 4 elements (Ti, Zr, and Hf). Factors were calculated that allowed correction of the systematic errors between the MCDF IPs and the experimental IPs. Single "experimental" IPs evaluated in eV (to ± 0.1 eV) for element 104 are: [104(0),6.5]; [104( 1 + ),14.8]; [104(2 + ),23.8]; [104(3 + ),31.9]. Multiple experimental IPs evaluated in eV for element 104 are: [(0-2+ ),21.2±0.2]; [(0-3+ ),45.1 ±0.2]; [(0-4+ ),76.8±0.3].Our MCDF results track 11 of the 12 experimental single IPs studied for group 4 atoms and ions. The exception is Hf( 2 + ). We submit our calculated IP of 22.4 ± 0.2 eV as much more accurate than the value of 23.3 eV derived from experiment.
Resumo:
Multiconfiguration relativistic Dirac-Fock (MCDF) values were calculated for the first five ionization potentials of element 105 (unnilpentium) and of the other group 5b elements (V, Nb, and Ta). Some of these ionization potentials in electron volts (eV) with uncertainties are: 105(0), 7.4±0.4; 105(1 +), 16.3 ±0.2; 105(2 +), 24.3 ± 0.2; 105(3 + ), 34.9 ± 0.5; and 105(4 + ), 44.9 ± 0.1. Ionization potentials for Ta(1+), Ta(2 +), and Ta(3 + ) were also calculated. Accurate experimental values for these ionization potentials are not available. Ionic radii are presented for the 2+, 3+, 4 +, and 5+ ions of element 105 and for the + 2 ions of vanadium and niobium. These radii for vanadium and niobium are not available elsewhere. The ionization potentials and ionic radii obtained are used to determine some standard electrode potentials for element 105. Born-Haber cycles and a form of the Born equation for the Gibbs free energy of hydration of ions were used to calculate the standard electrode potentials.