6 resultados para pattern clustering

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many recent Web 2.0 resource sharing applications can be subsumed under the "folksonomy" moniker. Regardless of the type of resource shared, all of these share a common structure describing the assignment of tags to resources by users. In this report, we generalize the notions of clustering and characteristic path length which play a major role in the current research on networks, where they are used to describe the small-world effects on many observable network datasets. To that end, we show that the notion of clustering has two facets which are not equivalent in the generalized setting. The new measures are evaluated on two large-scale folksonomy datasets from resource sharing systems on the web.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, research projects such as PADLR and SWAP have developed tools like Edutella or Bibster, which are targeted at establishing peer-to-peer knowledge management (P2PKM) systems. In such a system, it is necessary to obtain provide brief semantic descriptions of peers, so that routing algorithms or matchmaking processes can make decisions about which communities peers should belong to, or to which peers a given query should be forwarded. This paper proposes the use of graph clustering techniques on knowledge bases for that purpose. Using this clustering, we can show that our strategy requires up to 58% fewer queries than the baselines to yield full recall in a bibliographic P2PKM scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agro-ecological resource use pattern in a traditional hill agricultural watershed in Garhwal Himalaya was analysed along an altitudinal transect. Thirty one food crops were found, although only 0.5% agriculture land is under irrigation in the area. Fifteen different tree species within agroforestry systems were located and their density varied from 30-90 trees/ha. Grain yield, fodder from agroforest trees and crop residue were observed to be highest between 1200 and 1600 m a.s.l. Also the annual energy input- output ratio per hectare was highest between 1200 and 1600 m a.s.l. (1.46). This higher input- output ratio between 1200-1600 m a.s.l. was attributed to the fact that green fodder, obtained from agroforestry trees, was considered as farm produce. The energy budget across altitudinal zones revealed 95% contribution of the farmyard manure and the maximum output was in terms of either crop residue (35%) or fodder (55%) from the agroforestry component. Presently on average 23%, 29% and 41% cattle were dependent on stall feeding in villages located at higher, lower and middle altitudes respectively. Similarly, fuel wood consumption was greatly influenced by altitude and family size. The efficiency and sustainability of the hill agroecosystem can be restored by strengthening of the agroforestry component. The approach will be appreciated by the local communities and will readily find their acceptance and can ensure their effective participation in the programme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ongoing growth of the World Wide Web, catalyzed by the increasing possibility of ubiquitous access via a variety of devices, continues to strengthen its role as our prevalent information and commmunication medium. However, although tools like search engines facilitate retrieval, the task of finally making sense of Web content is still often left to human interpretation. The vision of supporting both humans and machines in such knowledge-based activities led to the development of different systems which allow to structure Web resources by metadata annotations. Interestingly, two major approaches which gained a considerable amount of attention are addressing the problem from nearly opposite directions: On the one hand, the idea of the Semantic Web suggests to formalize the knowledge within a particular domain by means of the "top-down" approach of defining ontologies. On the other hand, Social Annotation Systems as part of the so-called Web 2.0 movement implement a "bottom-up" style of categorization using arbitrary keywords. Experience as well as research in the characteristics of both systems has shown that their strengths and weaknesses seem to be inverse: While Social Annotation suffers from problems like, e. g., ambiguity or lack or precision, ontologies were especially designed to eliminate those. On the contrary, the latter suffer from a knowledge acquisition bottleneck, which is successfully overcome by the large user populations of Social Annotation Systems. Instead of being regarded as competing paradigms, the obvious potential synergies from a combination of both motivated approaches to "bridge the gap" between them. These were fostered by the evidence of emergent semantics, i. e., the self-organized evolution of implicit conceptual structures, within Social Annotation data. While several techniques to exploit the emergent patterns were proposed, a systematic analysis - especially regarding paradigms from the field of ontology learning - is still largely missing. This also includes a deeper understanding of the circumstances which affect the evolution processes. This work aims to address this gap by providing an in-depth study of methods and influencing factors to capture emergent semantics from Social Annotation Systems. We focus hereby on the acquisition of lexical semantics from the underlying networks of keywords, users and resources. Structured along different ontology learning tasks, we use a methodology of semantic grounding to characterize and evaluate the semantic relations captured by different methods. In all cases, our studies are based on datasets from several Social Annotation Systems. Specifically, we first analyze semantic relatedness among keywords, and identify measures which detect different notions of relatedness. These constitute the input of concept learning algorithms, which focus then on the discovery of synonymous and ambiguous keywords. Hereby, we assess the usefulness of various clustering techniques. As a prerequisite to induce hierarchical relationships, our next step is to study measures which quantify the level of generality of a particular keyword. We find that comparatively simple measures can approximate the generality information encoded in reference taxonomies. These insights are used to inform the final task, namely the creation of concept hierarchies. For this purpose, generality-based algorithms exhibit advantages compared to clustering approaches. In order to complement the identification of suitable methods to capture semantic structures, we analyze as a next step several factors which influence their emergence. Empirical evidence is provided that the amount of available data plays a crucial role for determining keyword meanings. From a different perspective, we examine pragmatic aspects by considering different annotation patterns among users. Based on a broad distinction between "categorizers" and "describers", we find that the latter produce more accurate results. This suggests a causal link between pragmatic and semantic aspects of keyword annotation. As a special kind of usage pattern, we then have a look at system abuse and spam. While observing a mixed picture, we suggest that an individual decision should be taken instead of disregarding spammers as a matter of principle. Finally, we discuss a set of applications which operationalize the results of our studies for enhancing both Social Annotation and semantic systems. These comprise on the one hand tools which foster the emergence of semantics, and on the one hand applications which exploit the socially induced relations to improve, e. g., searching, browsing, or user profiling facilities. In summary, the contributions of this work highlight viable methods and crucial aspects for designing enhanced knowledge-based services of a Social Semantic Web.