3 resultados para parametric and nonparametric test
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
As a result of the drive towards waste-poor world and reserving the non-renewable materials, recycling the construction and demolition materials become very essential. Now reuse of the recycled concrete aggregate more than 4 mm in producing new concrete is allowed but with natural sand a fine aggregate while. While the sand portion that represent about 30\% to 60\% of the crushed demolition materials is disposed off. To perform this research, recycled concrete sand was produced in the laboratory while nine recycled sands produced from construction and demolitions materials and two sands from natural crushed limestone were delivered from three plants. Ten concrete mix designs representing the concrete exposition classes XC1, XC2, XF3 and XF4 according to European standard EN 206 were produced with partial and full replacement of natural sand by the different recycled sands. Bituminous mixtures achieving the requirements of base courses according to Germany standards and both base and binder courses according to Egyptian standards were produced with the recycled sands as a substitution to the natural sands. The mechanical properties and durability of concrete produced with the different recycled sands were investigated and analyzed. Also the volumetric analysis and Marshall test were performed hot bituminous mixtures produced with the recycled sands. According to the effect of replacement the natural sand by the different recycled sands on the concrete compressive strength and durability, the recycled sands were classified into three groups. The maximum allowable recycled sand that can be used in the different concrete exposition class was determined for each group. For the asphalt concrete mixes all the investigated recycled sands can be used in mixes for base and binder courses up to 21\% of the total aggregate mass.
Resumo:
The main task of this work has been to investigate the effects of anisotropy onto the propagation of seismic waves along the Upper Mantle below Germany and adjacent areas. Refraction- and reflexion seismic experiments proved the existence of Upper Mantle anisotropy and its influence onto the propagation of Pn-waves. By the 3D tomographic investigations that have been done here for the crust and the upper mantle, considering the influence of anisotropy, a gap for the investigations in Europe has been closed. These investigations have been done with the SSH-Inversionprogram of Prof. Dr. M. Koch, which is able to compute simultaneously the seismic structure and hypocenters. For the investigation, a dataset has been available with recordings between the years 1975 to 2003 with a total of 60249 P- and 54212 S-phase records of 10028 seismic events. At the beginning, a precise analysis of the residuals (RES, the difference between calculated and observed arrivaltime) has been done which confirmed the existence of anisotropy for Pn-phases. The recognized sinusoidal distribution has been compensated by an extension of the SSH-program by an ellipse with a slow and rectangular fast axis with azimuth to correct the Pn-velocities. The azimuth of the fast axis has been fixed by the application of the simultaneous inversion at 25° - 27° with a variation of the velocities at +- 2.5 about an average value at 8 km/s. This new value differs from the old one at 35°, recognized in the initial residual analysis. This depends on the new computed hypocenters together with the structure. The application of the elliptical correction has resulted in a better fit of the vertical layered 1D-Model, compared to the results of preceding seismological experiments and 1D and 2D investigations. The optimal result of the 1D-inversion has been used as initial starting model for the 3D-inversions to compute the three dimensional picture of the seismic structure of the Crust and Upper Mantle. The simultaneous inversion has showed an optimization of the relocalization of the hypocenters and the reconstruction of the seismic structure in comparison to the geology and tectonic, as described by other investigations. The investigations for the seismic structure and the relocalization have been confirmed by several different tests. First, synthetic traveltime data are computed with an anisotropic variation and inverted with and without anisotropic correction. Further, tests with randomly disturbed hypocenters and traveltime data have been proceeded to verify the influence of the initial values onto the relocalization accuracy and onto the seismic structure and to test for a further improvement by the application of the anisotropic correction. Finally, the results of the work have been applied onto the Waldkirch earthquake in 2004 to compare the isotropic and the anisotropic relocalization with the initial optimal one to verify whether there is some improvement.
Resumo:
Optimizing the composition of manure has the potential to reduce nutrient losses to the environment and to increase crop yields. In this study the effect of dietary ratios of carbon (C) to nitrogen (N) and neutral detergent fibre (NDF) to soluble carbohydrates (SC) on faeces composition of water buffalo heifers was assessed. Two digestibility trials were conducted with 12 animals each, fed one control and four test diets composed to achieve (1) high C/N and high NDF/SC ratios (HH), (2) low C/N and low NDF/SC ratios (LL), (3) high C/N and low NDF/SC ratios (HL) and (4) low C/N and high NDF/SC (LH) ratios. Faecal C/N ratios were generally lower than dietary C/N ratios, but the reduction was especially large for high C/N ratio diets (HH=55 %, HL=51 %). Faecal N concentration was positively correlated (r^2 = 0.6; P < 0.001) with N intake, but the increase in faecal N was more pronounced for diets that supplied low amounts of N. Faecal NDF concentration was positively related to NDF intake (r^2 = 0.42; P < 0.001), as well as the faecal C/N ratio (r^2 = 0.3; P < 0.001). Results demonstrate that C/N ratio and NDF concentration of buffalo manure were affected by diet composition. Diets with high C/N ratio and low NDF/SC ratio are preferable with regard to manure quality, but may not satisfy the nutritional requirements of producing animals, since N concentration in these diets was low and fibre concentration simultaneously high.