3 resultados para online interaction learning model
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
This thesis investigates a method for human-robot interaction (HRI) in order to uphold productivity of industrial robots like minimization of the shortest operation time, while ensuring human safety like collision avoidance. For solving such problems an online motion planning approach for robotic manipulators with HRI has been proposed. The approach is based on model predictive control (MPC) with embedded mixed integer programming. The planning strategies of the robotic manipulators mainly considered in the thesis are directly performed in the workspace for easy obstacle representation. The non-convex optimization problem is approximated by a mixed-integer program (MIP). It is further effectively reformulated such that the number of binary variables and the number of feasible integer solutions are drastically decreased. Safety-relevant regions, which are potentially occupied by the human operators, can be generated online by a proposed method based on hidden Markov models. In contrast to previous approaches, which derive predictions based on probability density functions in the form of single points, such as most likely or expected human positions, the proposed method computes safety-relevant subsets of the workspace as a region which is possibly occupied by the human at future instances of time. The method is further enhanced by combining reachability analysis to increase the prediction accuracy. These safety-relevant regions can subsequently serve as safety constraints when the motion is planned by optimization. This way one arrives at motion plans that are safe, i.e. plans that avoid collision with a probability not less than a predefined threshold. The developed methods have been successfully applied to a developed demonstrator, where an industrial robot works in the same space as a human operator. The task of the industrial robot is to drive its end-effector according to a nominal sequence of grippingmotion-releasing operations while no collision with a human arm occurs.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.
Resumo:
The objective of this study was to develop an internet-based seminar framework applicable for landscape architecture education. This process was accompanied by various aims. The basic expectation was to keep the main characteristics of landscape architecture education also in the online format. On top of that, four further objectives were anticipated: (1) training of competences for virtual team work, (2) fostering intercultural competence, (3) creation of equal opportunities for education through internet-based open access and (4) synergy effects and learning processes across institutional boundaries. This work started with the hypothesis that these four expected advantages would compensate for additional organisational efforts caused by the online delivery of the seminars and thus lead to a sustainable integration of this new learning mode into landscape architecture curricula. This rationale was followed by a presentation of four areas of knowledge to which the seminar development was directly related (1) landscape architecture as a subject and its pedagogy, (2) general learning theories, (3) developments in the ICT sector and (4) wider societal driving forces such as global citizenship and the increase of open educational resources. The research design took the shape of a pedagogical action research cycle. This approach was constructive: The author herself is teaching international landscape architecture students so that the model could directly be applied in practice. Seven online seminars were implemented in the period from 2008 to 2013 and this experience represents the core of this study. The seminars were conducted with varying themes while its pedagogy, organisation and the technological tools remained widely identical. The research design is further based on three levels of observation: (1) the seminar design on the basis of theory and methods from the learning sciences, in particular educational constructivism, (2) the seminar evaluation and (3) the evaluation of the seminars’ long term impact. The seminar model itself basically consists of four elements: (1) the taxonomy of learning objectives, (2) ICT tools and their application and pedagogy, (3) process models and (4) the case study framework. The seminar framework was followed by the presentation of the evaluation findings. The major findings of this study can be summed up as follows: Implementing online seminars across educational and national boundaries was possible both in term of organisation and technology. In particular, a high level of cultural diversity among the seminar participants has definitively been achieved. However, there were also obvious obstacles. These were primarily competing study commitments and incompatible schedules among the students attending from different academic programmes, partly even in different time zones. Both factors had negative impact on the individual and working group performances. With respect to the technical framework it can be concluded that the majority of the participants were able to use the tools either directly without any problem or after overcoming some smaller problems. Also the seminar wiki was intensively used for completing the seminar assignments. However, too less truly collaborative text production was observed which could be improved by changing the requirements for the collaborative task. Two different process models have been applied for guiding the collaboration of the small groups and both were in general successful. However, it needs to be said that even if the students were able to follow the collaborative task and to co-construct and compare case studies, most of them were not able to synthesize the knowledge they had compiled. This means that the area of consideration often remained on the level of the case and further reflections, generalisations and critique were largely missing. This shows that the seminar model needs to find better ways for triggering knowledge building and critical reflection. It was also suggested to have a more differentiated group building strategy in future seminars. A comparison of pre- and post seminar concept maps showed that an increase of factual and conceptual knowledge on the individual level was widely recognizable. Also the evaluation of the case studies (the major seminar output) revealed that the students have undergone developments of both the factual and the conceptual knowledge domain. Also their self-assessment with respect to individual learning development showed that the highest consensus was achieved in the field of subject-specific knowledge. The participants were much more doubtful with regard to the progress of generic competences such as analysis, communication and organisation. However, 50% of the participants confirmed that they perceived individual development on all competence areas the survey had asked for. Have the additional four targets been met? Concerning the competences for working in a virtual team it can be concluded that the vast majority was able to use the internet-based tools and to work with them in a target-oriented way. However, there were obvious differences regarding the intensity and activity of participation, both because of external and personal factors. A very positive aspect is the achievement of a high cultural diversity supporting the participants’ intercultural competence. Learning from group members was obviously a success factor for the working groups. Regarding the possibilities for better accessibility of educational opportunities it became clear that a significant number of participants were not able to go abroad during their studies because of financial or personal reasons. They confirmed that the online seminar was to some extent a compensation for not having been abroad for studying. Inter-institutional learning and synergy was achieved in so far that many teachers from different countries contributed with individual lectures. However, those teachers hardly ever followed more than one session. Therefore, the learning effect remained largely within the seminar learning group. Looking back at the research design it can be said that the pedagogical action research cycle was an appropriate and valuable approach allowing for strong interaction between theory and practice. However, some more external evaluation from peers in particular regarding the participants’ products would have been valuable.