9 resultados para non-uniform scale perturbation finite difference scheme
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The main aim of this paper is the development of suitable bases (replacing the power basis x^n (n\in\IN_\le 0) which enable the direct series representation of orthogonal polynomial systems on non-uniform lattices (quadratic lattices of a discrete or a q-discrete variable). We present two bases of this type, the first of which allows to write solutions of arbitrary divided-difference equations in terms of series representations extending results given in [16] for the q-case. Furthermore it enables the representation of the Stieltjes function which can be used to prove the equivalence between the Pearson equation for a given linear functional and the Riccati equation for the formal Stieltjes function. If the Askey-Wilson polynomials are written in terms of this basis, however, the coefficients turn out to be not q-hypergeometric. Therefore, we present a second basis, which shares several relevant properties with the first one. This basis enables to generate the defining representation of the Askey-Wilson polynomials directly from their divided-difference equation. For this purpose the divided-difference equation must be rewritten in terms of suitable divided-difference operators developed in [5], see also [6].
Resumo:
Using the functional approach, we state and prove a characterization theorem for classical orthogonal polynomials on non-uniform lattices (quadratic lattices of a discrete or a q-discrete variable) including the Askey-Wilson polynomials. This theorem proves the equivalence between seven characterization properties, namely the Pearson equation for the linear functional, the second-order divided-difference equation, the orthogonality of the derivatives, the Rodrigues formula, two types of structure relations,and the Riccati equation for the formal Stieltjes function.
Resumo:
Inhalt dieser Arbeit ist ein Verfahren zur numerischen Lösung der zweidimensionalen Flachwassergleichung, welche das Fließverhalten von Gewässern, deren Oberflächenausdehnung wesentlich größer als deren Tiefe ist, modelliert. Diese Gleichung beschreibt die gravitationsbedingte zeitliche Änderung eines gegebenen Anfangszustandes bei Gewässern mit freier Oberfläche. Diese Klasse beinhaltet Probleme wie das Verhalten von Wellen an flachen Stränden oder die Bewegung einer Flutwelle in einem Fluss. Diese Beispiele zeigen deutlich die Notwendigkeit, den Einfluss von Topographie sowie die Behandlung von Nass/Trockenübergängen im Verfahren zu berücksichtigen. In der vorliegenden Dissertation wird ein, in Gebieten mit hinreichender Wasserhöhe, hochgenaues Finite-Volumen-Verfahren zur numerischen Bestimmung des zeitlichen Verlaufs der Lösung der zweidimensionalen Flachwassergleichung aus gegebenen Anfangs- und Randbedingungen auf einem unstrukturierten Gitter vorgestellt, welches in der Lage ist, den Einfluss topographischer Quellterme auf die Strömung zu berücksichtigen, sowie in sogenannten \glqq lake at rest\grqq-stationären Zuständen diesen Einfluss mit den numerischen Flüssen exakt auszubalancieren. Basis des Verfahrens ist ein Finite-Volumen-Ansatz erster Ordnung, welcher durch eine WENO Rekonstruktion unter Verwendung der Methode der kleinsten Quadrate und eine sogenannte Space Time Expansion erweitert wird mit dem Ziel, ein Verfahren beliebig hoher Ordnung zu erhalten. Die im Verfahren auftretenden Riemannprobleme werden mit dem Riemannlöser von Chinnayya, LeRoux und Seguin von 1999 gelöst, welcher die Einflüsse der Topographie auf den Strömungsverlauf mit berücksichtigt. Es wird in der Arbeit bewiesen, dass die Koeffizienten der durch das WENO-Verfahren berechneten Rekonstruktionspolynome die räumlichen Ableitungen der zu rekonstruierenden Funktion mit einem zur Verfahrensordnung passenden Genauigkeitsgrad approximieren. Ebenso wird bewiesen, dass die Koeffizienten des aus der Space Time Expansion resultierenden Polynoms die räumlichen und zeitlichen Ableitungen der Lösung des Anfangswertproblems approximieren. Darüber hinaus wird die wohlbalanciertheit des Verfahrens für beliebig hohe numerische Ordnung bewiesen. Für die Behandlung von Nass/Trockenübergangen wird eine Methode zur Ordnungsreduktion abhängig von Wasserhöhe und Zellgröße vorgeschlagen. Dies ist notwendig, um in der Rechnung negative Werte für die Wasserhöhe, welche als Folge von Oszillationen des Raum-Zeit-Polynoms auftreten können, zu vermeiden. Numerische Ergebnisse die die theoretische Verfahrensordnung bestätigen werden ebenso präsentiert wie Beispiele, welche die hervorragenden Eigenschaften des Gesamtverfahrens in der Berechnung herausfordernder Probleme demonstrieren.
Resumo:
In the theory of the Navier-Stokes equations, the proofs of some basic known results, like for example the uniqueness of solutions to the stationary Navier-Stokes equations under smallness assumptions on the data or the stability of certain time discretization schemes, actually only use a small range of properties and are therefore valid in a more general context. This observation leads us to introduce the concept of SST spaces, a generalization of the functional setting for the Navier-Stokes equations. It allows us to prove (by means of counterexamples) that several uniqueness and stability conjectures that are still open in the case of the Navier-Stokes equations have a negative answer in the larger class of SST spaces, thereby showing that proof strategies used for a number of classical results are not sufficient to affirmatively answer these open questions. More precisely, in the larger class of SST spaces, non-uniqueness phenomena can be observed for the implicit Euler scheme, for two nonlinear versions of the Crank-Nicolson scheme, for the fractional step theta scheme, and for the SST-generalized stationary Navier-Stokes equations. As far as stability is concerned, a linear version of the Euler scheme, a nonlinear version of the Crank-Nicolson scheme, and the fractional step theta scheme turn out to be non-stable in the class of SST spaces. The positive results established in this thesis include the generalization of classical uniqueness and stability results to SST spaces, the uniqueness of solutions (under smallness assumptions) to two nonlinear versions of the Euler scheme, two nonlinear versions of the Crank-Nicolson scheme, and the fractional step theta scheme for general SST spaces, the second order convergence of a version of the Crank-Nicolson scheme, and a new proof of the first order convergence of the implicit Euler scheme for the Navier-Stokes equations. For each convergence result, we provide conditions on the data that guarantee the existence of nonstationary solutions satisfying the regularity assumptions needed for the corresponding convergence theorem. In the case of the Crank-Nicolson scheme, this involves a compatibility condition at the corner of the space-time cylinder, which can be satisfied via a suitable prescription of the initial acceleration.
Resumo:
In this work, we present an atomistic-continuum model for simulations of ultrafast laser-induced melting processes in semiconductors on the example of silicon. The kinetics of transient non-equilibrium phase transition mechanisms is addressed with MD method on the atomic level, whereas the laser light absorption, strong generated electron-phonon nonequilibrium, fast heat conduction, and photo-excited free carrier diffusion are accounted for with a continuum TTM-like model (called nTTM). First, we independently consider the applications of nTTM and MD for the description of silicon, and then construct the combined MD-nTTM model. Its development and thorough testing is followed by a comprehensive computational study of fast nonequilibrium processes induced in silicon by an ultrashort laser irradiation. The new model allowed to investigate the effect of laser-induced pressure and temperature of the lattice on the melting kinetics. Two competing melting mechanisms, heterogeneous and homogeneous, were identified in our big-scale simulations. Apart from the classical heterogeneous melting mechanism, the nucleation of the liquid phase homogeneously inside the material significantly contributes to the melting process. The simulations showed, that due to the open diamond structure of the crystal, the laser-generated internal compressive stresses reduce the crystal stability against the homogeneous melting. Consequently, the latter can take a massive character within several picoseconds upon the laser heating. Due to the large negative volume of melting of silicon, the material contracts upon the phase transition, relaxes the compressive stresses, and the subsequent melting proceeds heterogeneously until the excess of thermal energy is consumed. A series of simulations for a range of absorbed fluences allowed us to find the threshold fluence value at which homogeneous liquid nucleation starts contributing to the classical heterogeneous propagation of the solid-liquid interface. A series of simulations for a range of the material thicknesses showed that the sample width we chosen in our simulations (800 nm) corresponds to a thick sample. Additionally, in order to support the main conclusions, the results were verified for a different interatomic potential. Possible improvements of the model to account for nonthermal effects are discussed and certain restrictions on the suitable interatomic potentials are found. As a first step towards the inclusion of these effects into MD-nTTM, we performed nanometer-scale MD simulations with a new interatomic potential, designed to reproduce ab initio calculations at the laser-induced electronic temperature of 18946 K. The simulations demonstrated that, similarly to thermal melting, nonthermal phase transition occurs through nucleation. A series of simulations showed that higher (lower) initial pressure reinforces (hinders) the creation and the growth of nonthermal liquid nuclei. For the example of Si, the laser melting kinetics of semiconductors was found to be noticeably different from that of metals with a face-centered cubic crystal structure. The results of this study, therefore, have important implications for interpretation of experimental data on the kinetics of melting process of semiconductors.
Resumo:
The finite element method (FEM) is now developed to solve two-dimensional Hartree-Fock (HF) equations for atoms and diatomic molecules. The method and its implementation is described and results are presented for the atoms Be, Ne and Ar as well as the diatomic molecules LiH, BH, N_2 and CO as examples. Total energies and eigenvalues calculated with the FEM on the HF-level are compared with results obtained with the numerical standard methods used for the solution of the one dimensional HF equations for atoms and for diatomic molecules with the traditional LCAO quantum chemical methods and the newly developed finite difference method on the HF-level. In general the accuracy increases from the LCAO - to the finite difference - to the finite element method.
Accurate Hartree-Fock-Slater calculations on small diatomic molecules with the finite-element method
Resumo:
We report on the self-consistent field solution of the Hartree-Fock-Slater equations using the finite-element method for the three small diatomic molecules N_2, BH and CO as examples. The quality of the results is not only better by two orders of magnitude than the fully numerical finite difference method of Laaksonen et al. but the method also requires a smaller number of grid points.
Resumo:
Summary - Cooking banana is one of the most important crops in Uganda; it is a staple food and source of household income in rural areas. The most common cooking banana is locally called matooke, a Musa sp triploid acuminate genome group (AAA-EAHB). It is perishable and traded in fresh form leading to very high postharvest losses (22-45%). This is attributed to: non-uniform level of harvest maturity, poor handling, bulk transportation and lack of value addition/processing technologies, which are currently the main challenges for trade and export, and diversified utilization of matooke. Drying is one of the oldest technologies employed in processing of agricultural produce. A lot of research has been carried out on drying of fruits and vegetables, but little information is available on matooke. Drying of matooke and milling it to flour extends its shelf-life is an important means to overcome the above challenges. Raw matooke flour is a generic flour developed to improve shelf stability of the fruit and to find alternative uses. It is rich in starch (80 - 85%db) and subsequently has a high potential as a calorie resource base. It possesses good properties for both food and non-food industrial use. Some effort has been done to commercialize the processing of matooke but there is still limited information on its processing into flour. It was imperative to carry out an in-depth study to bridge the following gaps: lack of accurate information on the maturity window within which matooke for processing into flour can be harvested leading to non-uniform quality of matooke flour; there is no information on moisture sorption isotherm for matooke from which the minimum equilibrium moisture content in relation to temperature and relative humidity is obtainable, below which the dry matooke would be microbiologically shelf-stable; and lack of information on drying behavior of matooke and standardized processing parameters for matooke in relation to physicochemical properties of the flour. The main objective of the study was to establish the optimum harvest maturity window and optimize the processing parameters for obtaining standardized microbiologically shelf-stable matooke flour with good starch quality attributes. This research was designed to: i) establish the optimum maturity harvest window within which matooke can be harvested to produce a consistent quality of matooke flour, ii) establish the sorption isotherms for matooke, iii) establish the effect of process parameters on drying characteristics of matooke, iv) optimize the drying process parameters for matooke, v) validate the models of maturity and optimum process parameters and vi) standardize process parameters for commercial processing of matooke. Samples were obtained from a banana plantation at Presidential Initiative on Banana Industrial Development (PIBID), Technology Business Incubation Center (TBI) at Nyaruzunga – Bushenyi in Western Uganda. A completely randomized design (CRD) was employed in selecting the banana stools from which samples for the experiments were picked. The cultivar Mbwazirume which is soft cooking and commonly grown in Bushenyi was selected for the study. The static gravitation method recommended by COST 90 Project (Wolf et al., 1985), was used for determination of moisture sorption isotherms. A research dryer developed for this research. All experiments were carried out in laboratories at TBI. The physiological maturity of matooke cv. mbwazirume at Bushenyi is 21 weeks. The optimum harvest maturity window for commercial processing of matooke flour (Raw Tooke Flour - RTF) at Bushenyi is between 15-21 weeks. The finger weight model is recommended for farmers to estimate harvest maturity for matooke and the combined model of finger weight and pulp peel ratio is recommended for commercial processors. Matooke isotherms exhibited type II curve behavior which is characteristic of foodstuffs. The GAB model best described all the adsorption and desorption moisture isotherms. For commercial processing of matooke, in order to obtain a microbiologically shelf-stable dry product. It is recommended to dry it to moisture content below or equal to 10% (wb). The hysteresis phenomenon was exhibited by the moisture sorption isotherms for matooke. The isoteric heat of sorption for both adsorptions and desorption isotherms increased with decreased moisture content. The total isosteric heat of sorption for matooke: adsorption isotherm ranged from 4,586 – 2,386 kJ/kg and desorption isotherm from 18,194– 2,391 kJ/kg for equilibrium moisture content from 0.3 – 0.01 (db) respectively. The minimum energy required for drying matooke from 80 – 10% (wb) is 8,124 kJ/kg of water removed. Implying that the minimum energy required for drying of 1 kg of fresh matooke from 80 - 10% (wb) is 5,793 kJ. The drying of matooke takes place in three steps: the warm-up and the two falling rate periods. The drying rate constant for all processing parameters ranged from 5,793 kJ and effective diffusivity ranged from 1.5E-10 - 8.27E-10 m2/s. The activation energy (Ea) for matooke was 16.3kJ/mol (1,605 kJ/kg). Comparing the activation energy (Ea) with the net isosteric heat of sorption for desorption isotherm (qst) (1,297.62) at 0.1 (kg water/kg dry matter), indicated that Ea was higher than qst suggesting that moisture molecules travel in liquid form in matooke slices. The total color difference (ΔE*) between the fresh and dry samples, was lowest for effect of thickness of 7 mm, followed by air velocity of 6 m/s, and then drying air temperature at 70˚C. The drying system controlled by set surface product temperature, reduced the drying time by 50% compared to that of a drying system controlled by set air drying temperature. The processing parameters did not have a significant effect on physicochemical and quality attributes, suggesting that any drying air temperature can be used in the initial stages of drying as long as the product temperature does not exceed gelatinization temperature of matooke (72˚C). The optimum processing parameters for single-layer drying of matooke are: thickness = 3 mm, air temperatures 70˚C, dew point temperature 18˚C and air velocity 6 m/s overflow mode. From practical point of view it is recommended that for commercial processing of matooke, to employ multi-layer drying of loading capacity equal or less than 7 kg/m², thickness 3 mm, air temperatures 70˚C, dew point temperature 18˚C and air velocity 6 m/s overflow mode.
Resumo:
Das Verfahren der Lebensmitteltrocknung wird häufig angewendet, um ein Produkt für längere Zeit haltbar zu machen. Obst und Gemüse sind aufgrund ihres hohen Wassergehalts leicht verderblich durch biochemische Vorgänge innerhalb des Produktes, nicht sachgemäße Lagerung und unzureichende Transportmöglichkeiten. Um solche Verluste zu vermeiden wird die direkte Trocknung eingesetzt, welche die älteste Methode zum langfristigen haltbarmachen ist. Diese Methode ist jedoch veraltet und kann den heutigen Herausforderungen nicht gerecht werden. In der vorliegenden Arbeit wurde ein neuer Chargentrockner, mit diagonalem Luftstömungskanal entlang der Länge des Trocknungsraumes und ohne Leitbleche entwickelt. Neben dem unbestreitbaren Nutzen der Verwendung von Leitblechen, erhöhen diese jedoch die Konstruktionskosten und führen auch zu einer Erhöhung des Druckverlustes. Dadurch wird im Trocknungsprozess mehr Energie verbraucht. Um eine räumlich gleichmäßige Trocknung ohne Leitbleche zu erreichen, wurden die Lebensmittelbehälter diagonal entlang der Länge des Trockners platziert. Das vorrangige Ziel des diagonalen Kanals war, die einströmende, warme Luft gleichmäßig auf das gesamte Produkt auszurichten. Die Simulation des Luftstroms wurde mit ANSYS-Fluent in der ANSYS Workbench Plattform durchgeführt. Zwei verschiedene Geometrien der Trocknungskammer, diagonal und nicht diagonal, wurden modelliert und die Ergebnisse für eine gleichmäßige Luftverteilung aus dem diagonalen Luftströmungsdesign erhalten. Es wurde eine Reihe von Experimenten durchgeführt, um das Design zu bewerten. Kartoffelscheiben dienten als Trocknungsgut. Die statistischen Ergebnisse zeigen einen guten Korrelationskoeffizienten für die Luftstromverteilung (87,09%) zwischen dem durchschnittlich vorhergesagten und der durchschnittlichen gemessenen Strömungsgeschwindigkeit. Um den Effekt der gleichmäßigen Luftverteilung auf die Veränderung der Qualität zu bewerten, wurde die Farbe des Produktes, entlang der gesamten Länge der Trocknungskammer kontaktfrei im on-line-Verfahren bestimmt. Zu diesem Zweck wurde eine Imaging-Box, bestehend aus Kamera und Beleuchtung entwickelt. Räumliche Unterschiede dieses Qualitätsparameters wurden als Kriterium gewählt, um die gleichmäßige Trocknungsqualität in der Trocknungskammer zu bewerten. Entscheidend beim Lebensmittel-Chargentrockner ist sein Energieverbrauch. Dafür wurden thermodynamische Analysen des Trockners durchgeführt. Die Energieeffizienz des Systems wurde unter den gewählten Trocknungsbedingungen mit 50,16% kalkuliert. Die durchschnittlich genutzten Energie in Form von Elektrizität zur Herstellung von 1kg getrockneter Kartoffeln wurde mit weniger als 16,24 MJ/kg und weniger als 4,78 MJ/kg Wasser zum verdampfen bei einer sehr hohen Temperatur von jeweils 65°C und Scheibendicken von 5mm kalkuliert. Die Energie- und Exergieanalysen für diagonale Chargentrockner wurden zudem mit denen anderer Chargentrockner verglichen. Die Auswahl von Trocknungstemperatur, Massenflussrate der Trocknungsluft, Trocknerkapazität und Heiztyp sind die wichtigen Parameter zur Bewertung der genutzten Energie von Chargentrocknern. Die Entwicklung des diagonalen Chargentrockners ist eine nützliche und effektive Möglichkeit um dei Trocknungshomogenität zu erhöhen. Das Design erlaubt es, das gesamte Produkt in der Trocknungskammer gleichmäßigen Luftverhältnissen auszusetzen, statt die Luft von einer Horde zur nächsten zu leiten.