22 resultados para neutral molecules
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The real-time dynamics of Na_n (n=3-21) cluster multiphoton ionization and fragmentation has been studied in beam experiments applying femtosecond pump-probe techniques in combination with ion and electron spectroscopy. Three dimensional wave packet motions in the trimer Na_3 ground state X and excited state B have been observed. We report the first study of cluster properties (energy, bandwidth and lifetime of intermediate resonances Na_n^*) with femtosecond laser pulses. The observation of four absorption resonances for the cluster Na_8 with different energy widths and different decay patterns is more difficult to interpret by surface plasmon like resonances than by molecular structure and dynamics. Timeresolved fragmentation of cluster ions Na_n^+ indicates that direct photo-induced fragmentation processes are more important at short times than the statistical unimolecular decay.
Resumo:
This thesis work is dedicated to use the computer-algebraic approach for dealing with the group symmetries and studying the symmetry properties of molecules and clusters. The Maple package Bethe, created to extract and manipulate the group-theoretical data and to simplify some of the symmetry applications, is introduced. First of all the advantages of using Bethe to generate the group theoretical data are demonstrated. In the current version, the data of 72 frequently applied point groups can be used, together with the data for all of the corresponding double groups. The emphasize of this work is placed to the applications of this package in physics of molecules and clusters. Apart from the analysis of the spectral activity of molecules with point-group symmetry, it is demonstrated how Bethe can be used to understand the field splitting in crystals or to construct the corresponding wave functions. Several examples are worked out to display (some of) the present features of the Bethe program. While we cannot show all the details explicitly, these examples certainly demonstrate the great potential in applying computer algebraic techniques to study the symmetry properties of molecules and clusters. A special attention is placed in this thesis work on the flexibility of the Bethe package, which makes it possible to implement another applications of symmetry. This implementation is very reasonable, because some of the most complicated steps of the possible future applications are already realized within the Bethe. For instance, the vibrational coordinates in terms of the internal displacement vectors for the Wilson's method and the same coordinates in terms of cartesian displacement vectors as well as the Clebsch-Gordan coefficients for the Jahn-Teller problem are generated in the present version of the program. For the Jahn-Teller problem, moreover, use of the computer-algebraic tool seems to be even inevitable, because this problem demands an analytical access to the adiabatic potential and, therefore, can not be realized by the numerical algorithm. However, the ability of the Bethe package is not exhausted by applications, mentioned in this thesis work. There are various directions in which the Bethe program could be developed in the future. Apart from (i) studying of the magnetic properties of materials and (ii) optical transitions, interest can be pointed out for (iii) the vibronic spectroscopy, and many others. Implementation of these applications into the package can make Bethe a much more powerful tool.
Resumo:
Wir entwickeln die Starkfeldnäherung für die Erzeugung hoher Harmonischer in Wasserstoffmolekülen, wobei die Vibrationsbewegung berücksichtigt wird, sowie die laserinduzierte Kopplung zwischen den beiden untersten Born-Oppenheimer-Zuständen im Molekülion, das durch die anfängliche Ionisation des Moleküls erzeugt wird. Wir zeigen, dass die Kopplung bei längeren Laserwellenlängen (≈ 2 μm) wichtig wird und zu einer Reduzierung der Erzeugung von Harmonischen führt, sowie zu einer Änderung des Verhältnisses von Harmonischen in verschiedenen Isotopen. ----------------------------------------------------------------------- We develop the strong-field approximation for high-order harmonic generation in hydrogen molecules, including the vibrational motion and the laser-induced coupling of the lowest two Born-Oppenheimer states in the molecular ion that is created by the initial ionization of the molecule. We show that the field dressing becomes important at long laser wavelengths (≈ 2 μm), leading to an overall reduction of harmonic generation and modifying the ratio of harmonic signals from different isotopes.
Resumo:
The electronic properties of neutral and ionized divalent-metal clusters have been studied using a microscopic theory, which takes into account the interplay between van der Waals (vdW) and covalent bonding in the neutral clusters, and the competition between hole delocalization and polarization energy in the ionized clusters. By calculating the ground-state energies of neutral and ionized. Hg_n clusters, we determine the size dependence of the bond character and the ionization potential I_p(n). For neutral Hg_n clusters we obtain a transition from van del Waals to covalent behaviour at the critical size n_c ~ 10-20 atoms. Results for I_p(Hg_n) with n \le 20 are in good agreement with experiments, and suggest that small Hg_n^+ clusters can be viewed as consisting of a positive trimer core Hg_3^+ surrounded by n - 3 polarized neutral atoms.
Resumo:
The electronic states of small AI_n (n = 2 - 8) clusters have been calculated with a relativistic ab-initio MOLCAO Dirac-Fock-Slater method using numerical atomic DFS wave-functions. The excitation energies were obtained from a ground state calculation of neutral clusters, and in addition from negative clusters charged by half an electron in order to account for part of the relaxation. These energies are compared with experimental photoelectron spectra.
Resumo:
A LCAO-MO (linear combination of atomic orbitals - molecular orbitals) relativistic Dirac-Fock-Slater program is presented, which allows one to calculate accurate total energies for diatomic molecules. Numerical atomic Dirac-Fock-Slater wave functions are used as basis functions. All integrations as well as the solution of the Poisson equation are done fully numerical, with a relative accuracy of 10{^-5} - 10{^-6}. The details of the method as well as first results are presented here.
Resumo:
The finite element method (FEM) is now developed to solve two-dimensional Hartree-Fock (HF) equations for atoms and diatomic molecules. The method and its implementation is described and results are presented for the atoms Be, Ne and Ar as well as the diatomic molecules LiH, BH, N_2 and CO as examples. Total energies and eigenvalues calculated with the FEM on the HF-level are compared with results obtained with the numerical standard methods used for the solution of the one dimensional HF equations for atoms and for diatomic molecules with the traditional LCAO quantum chemical methods and the newly developed finite difference method on the HF-level. In general the accuracy increases from the LCAO - to the finite difference - to the finite element method.
Accurate Hartree-Fock-Slater calculations on small diatomic molecules with the finite-element method
Resumo:
We report on the self-consistent field solution of the Hartree-Fock-Slater equations using the finite-element method for the three small diatomic molecules N_2, BH and CO as examples. The quality of the results is not only better by two orders of magnitude than the fully numerical finite difference method of Laaksonen et al. but the method also requires a smaller number of grid points.
Resumo:
We present spin-polarized Hartree-Fock-Slater calculations performed with the highly accurate numerical finite element method for the atoms N and 0 and the diatomic radical OH as examples.
Resumo:
The basic thermodynamic functions, the entropy, free energy, and enthalpy, for element 105 (hahnium) in electronic configurations d^3 s^2, d^3 sp, and d^4s^1 and for its +5 ionized state (5f^14) have been calculated as a function of temperature. The data are based on the results of the calculations of the corresponding electronic states of element 105 using the multiconfiguration Dirac-Fock method.
Resumo:
We present the Finite-Element-Method (FEM) in its application to quantum mechanical problems solving for diatomic molecules. Results for Hartree-Fock calculations of H_2 and Hartree-Fock-Slater calculations of molecules like N_2 and C0 have been obtained. The accuracy achieved with less then 5000 grid points for the total energies of these systems is 10_-8 a.u., which is demonstrated for N_2.
Resumo:
We present the finite-element method in its application to solving quantum-mechanical problems for diatomic molecules. Results for Hartree-Fock calculations of H_2 and Hartree-Fock-Slater calculations for molecules like N_2 and CO are presented. The accuracy achieved with fewer than 5000 grid points for the total energies of these systems is 10^-8 a.u., which is about two orders of magnitude better than the accuracy of any other available method.
Resumo:
Relativistic molecular calculations within the Dirac-Slater scheme have been used in a study of the electronic structure of 6d-metal superheavy hexafluorides. The theoretical results are compared with calculations and measurements of the homolog 4d- and 5d-metal hexafluorides. Large spin-orbit splitting dominates the electronic structure and even has the same order of magnitude as the crystal-field splitting for the valence electrons for the superheavy molecules. Ionization energies have been calculated using a transition state procedure.
Resumo:
Using new relativistic molecular calculations within the Dirac-Slater scheme it is now feasible to study theoretically molecules containing superheavy elements. This opens a new era for the prediction of the physics and chemistry of superheavy elements. As an example we present the results for (_110 X) F_6, where it is shown that relativistic effects are nearly of the same order of magnitude as the crystal-field splitting.