3 resultados para mud-brick
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
In Khartoum (Sudan) a particular factor shaping urban land use is the rapid expansion of red brick making (BM) for the construction of houses which occurs on the most fertile agricultural Gerif soils along the Nile banks. The objectives of this study were to assess the profitability of BM, to explore the income distribution among farmers and kiln owners, to measure the dry matter (DM), nitrogen (N), phosphorus (P), potassium (K) and organic carbon (C_org) in cow dung used for BM, and to estimate the greenhouse gas (GHG) emissions from burned biomass fuel (cow dung and fuel wood). About 49 kiln owners were interviewed in 2009 using a semi-structured questionnaire that allowed to record socio-economic and variable cost data for budget calculations, and determination of Gini coefficients. Samples of cow dung were collected directly from the kilns and analyzed for their nutrients concentrations. To estimate GHG emissions a modified approach of the Intergovernmental Panel on Climate Change (IPCC) was used. The land rental value from red brick kilns was estimated at 5-fold the rental value from agriculture and the land rent to total cost ratio was 29% for urban farms compared to 6% for BM. The Gini coefficients indicated that income distribution among kiln owners was more equal than among urban farmers. Using IPCC default values the 475, 381, and 36 t DM of loose dung, compacted dung, and fuel wood used for BM emit annually 688, 548, and 60 t of GHGs, respectively.
Resumo:
The surge in the urban population evident in most developing countries is a worldwide phenomenon, and often the result of drought, conflicts, poverty and the lack of education opportunities. In parallel with the growth of the cities is the growing need for food which leads to the burgeoning expansion of urban and peri-urban agriculture (UPA). In this context, urban agriculture (UA) contributes significantly to supplying local markets with both vegetable and animal produce. As an income generating activity, UA also contributes to the livelihoods of poor urban dwellers. In order to evaluate the nutrient status of urban soils in relation to garden management, this study assessed nutrient fluxes (inputs and outputs) in gardens on urban Gerif soils on the banks of the River Nile in Khartoum, the capital city of Sudan. To achieve this objective, a preliminary baseline survey was carried out to describe the structure of the existing garden systems. In cooperation with the author of another PhD thesis (Ms. Ishtiag Abdalla), alternative uses of cow dung in brick making kilns in urban Khartoum were assessed; and the socio-economic criteria of the brick kiln owners or agents, economical and plant nutritional value of animal dung and the gaseous emission related to brick making activities were assessed. A total of 40 household heads were interviewed using a semi-structured questionnaire to collect information on demographic, socio-economic and migratory characteristics of the household members, the gardening systems used and the problems encountered in urban gardening. Based on the results of this survey, gardens were divided into three groups: mixed vegetable-fodder gardens, mixed vegetable-subsistence livestock gardens and pure vegetable gardens. The results revealed that UA is the exclusive domain of men, 80% of them non-native to Khartoum. The harvested produce in all gardens was market oriented and represented the main source of income for 83% of the gardeners. Fast growing leafy vegetables such as Jew’s mallow (Corchorous olitorius L.), purslane (Portulaca oleracea L.) and rocket (Eruca sativa Mill.) were the dominant cultivated species. Most of the gardens (95%) were continuously cultivated throughout the year without any fallow period, unless they were flooded. Gardeners were not generally aware of the importance of crop diversity, which may help them overcome the strongly fluctuating market prices for their produce and thereby strengthen the contributions of UA to the overall productivity of the city. To measure nutrient fluxes, four gardens were selected and their nutrients inputs and outputs flows were monitored. In each garden, all plots were monitored for quantification of nutrient inputs and outputs. To determine soil chemical fertility parameters in each of the studied gardens, soil samples were taken from three selected plots at the beginning of the study in October 2007 (gardens L1, L2 and H1) and in April 2008 (garden H2) and at the end of the study period in March 2010. Additional soil sampling occurred in May 2009 to assess changes in the soil nutrient status after the River Nile flood of 2008 had receded. Samples of rain and irrigation water (river and well-water) were analyzed for nitrogen (N), phosphorus (P), potassium (K) and carbon (C) content to determine their nutrient inputs. Catchment traps were installed to quantify the sediment yield from the River Nile flood. To quantify the nutrient inputs of sediments, samples were analyzed for N, P, K and organic carbon (Corg) content, cation exchange capacity (CEC) and the particle size distribution. The total nutrient inputs were calculated by multiplying the sediment nutrient content by total sediment deposits on individual gardens. Nutrient output in the form of harvested yield was quantified at harvest of each crop. Plant samples from each field were dried, and analyzed for their N, P, K and Corg content. Cumulative leaching losses of mineral N and P were estimated in a single plot in garden L1 from December 1st 2008 to July 1st 2009 using 12 ion exchange resins cartridges. Nutrients were extracted and analyzed for nitrate (NO3--N), ammonium (NH4+-N) and phosphate PO4-3-P. Changes in soil nutrient balance were assessed as inputs minus outputs. The results showed that across gardens, soil N and P concentrations increased from 2007 to 2009, while particle size distribution remained unchanged. Sediment loads and their respective contents of N, P and Corg decreased significantly (P < 0.05) from the gardens of the downstream lowlands (L1 and L2) to the gardens of the upstream highlands (H1 and H2). No significant difference was found in K deposits. None of the gardens received organic fertilizers and the only mineral fertilizer applied was urea (46-0-0). This equaled 29, 30, 54, and 67% of total N inputs to gardens L1, L2, H1, and H2, respectively. Sediment deposits of the River Nile floods contributed on average 67, 94, 6 and 42% to the total N, P, K and C inputs in lowland gardens and 33, 86, 4 and 37% of total N, P, K and C inputs in highland gardens. Irrigation water and rainfall contributed substantially to K inputs representing 96, 92, 94 and 96% of total K influxes in garden L1, L2, H1 and H2, respectively. Following the same order, total annual DM yields in the gardens were 26, 18, 16 and 1.8 t ha-1. Annual leaching losses were estimated to be 0.02 kg NH4+-N ha-1 (SE = 0.004), 0.03 kg NO3--N ha-1 (SE = 0.002) and 0.005 kg PO4-3-P ha-1 (SE = 0.0007). Differences between nutrient inputs and outputs indicated negative nutrient balances for P and K and positive balances of N and C for all gardens. The negative balances in P and K call for adoptions of new agricultural techniques such as regular manure additions or mulching which may enhance the soil organic matter status. A quantification of fluxes not measured in our study such as N2-fixation, dry deposition and gaseous emissions of C and N would be necessary to comprehensively assess the sustainability of these intensive gardening systems. The second part of the survey dealt with the brick making kilns. A total of 50 brick kiln owners/or agents were interviewed from July to August 2009, using a semi-structured questionnaire. The data collected included general information such as age, family size, education, land ownership, number of kilns managed and/or owned, number of months that kilns were in operation, quantity of inputs (cow dung and fuel wood) used, prices of inputs and products across the production season. Information related to the share value of the land on which the kilns were built and annual income for urban farmers and annual returns from dung for the animal raisers was also collected. Using descriptive statistics, budget calculation and Gini coefficient, the results indicated that renting the land to brick making kilns yields a 5-fold higher return than the rent for agriculture. Gini coefficient showed that the kiln owners had a more equal income distribution compared to farmers. To estimate emission of greenhouse gases (GHGs) and losses of N, P, K, Corg and DM from cow dung when used in brick making, samples of cow dung (loose and compacted) were collected from different kilns and analyzed for their N, P, K and Corg content. The procedure modified by the Intergovernmental Panel on Climate Change (IPCC, 1994) was used to estimate the gaseous emissions of cow dung and fuel wood. The amount of deforested wood was estimated according to the default values for wood density given by Dixon et al. (1991) and the expansion ratio for branches and small trees given by Brown et al. (1989). The data showed the monetary value of added N and P from cow dung was lower than for mineral fertilizers. Annual consumption of compacted dung (381 t DM) as biomass fuel by far exceeded the consumption of fuel wood (36 t DM). Gaseous emissions from cow dung and fuel wood were dominated by CO2, CO and CH4. Considering that Gerif land in urban Khartoum supports a multifunctional land use system, efficient use of natural resources (forest, dung, land and water) will enhance the sustainability of the UA and brick making activities. Adoption of new kilns with higher energy efficiency will reduce the amount of biomass fuels (cow dung and wood) used the amount of GHGs emitted and the threat to the few remaining forests.
Resumo:
Parasitic weeds of the genera Striga, Orobanche, and Phelipanche pose a severe problem for agriculture because they are difficult to control and are highly destructive to several crops. The present work was carried out during the period October, 2009 to February, 2012 to evaluate the potential of arbuscular mycorrhizal fungi (AMF) to suppress P. ramosa on tomatoes and to investigate the effects of air-dried powder and aqueous extracts from Euphorbia hirta on germination and haustorium initiation in Phelipanche ramosa. The work was divided into three parts: a survey of the indigenous mycorrhizal flora in Sudan, second, laboratory and greenhouse experiments (conducted in Germany and Sudan) to construct a base for the third part, which was a field trial in Sudan. A survey was performed in 2009 in the White Nile state, Sudan to assess AMF spore densities and root colonization in nine fields planted with 13 different important agricultural crops. In addition, an attempt was made to study the relationship between soil physico-chemical properties and AMF spore density, colonization rate, species richness and other diversity indices. The mean percentage of AMF colonization was 34%, ranging from 19-50%. The spore densities (expressed as per 100 g dry soil) retrieved from the rhizosphere of different crops were relatively high, varying from 344 to 1222 with a mean of 798. There was no correlation between spore densities in soil and root colonization percentage. A total of 45 morphologically classifiable species representing ten genera of AMF were detected with no correlation between the number of species found in a soil sample and the spore density. The most abundant genus was Glomus (20 species). The AMF diversity expressed by the Shannon–Weaver index was highest in sorghum (H\= 2.27) and Jews mallow (H\= 2.13) and lowest in alfalfa (H\= 1.4). With respect to crop species, the genera Glomus and Entrophospora were encountered in almost all crops, except for Entrophospora in alfalfa. Kuklospora was found only in sugarcane and sorghum. The genus Ambispora was recovered only in mint and okra, while mint and onion were the only species on which no Acaulospora was found. The hierarchical cluster analysis based on the similarity among AMF communities with respect to crop species overall showed that species compositions were relatively similar with the highest dissimilarity of about 25% separating three of the mango samples and the four sorghum samples from all other samples. Laboratory experiments studied the influence of root and stem exudates of three tomato varieties infected by three different Glomus species on germination of P. ramosa. Root exudates were collected 21or 42 days after transplanting (DAT) and stem exudates 42 DAT and tested for their effects on germination of P. ramosa seeds in vitro. The tomato varieties studied did not have an effect on either mycorrhizal colonization or Phelipanche germination. Germination in response to exudates from 42 day old mycorrhizal plants was significantly reduced in comparison to non-mycorrhizal controls. Germination of P. ramosa in response to root exudates from 21 day old plants was consistently higher than for 42 day-old plants (F=121.6; P<.0001). Stem diffusates from non-mycorrhizal plants invariably elicited higher germination than diffusates from the corresponding mycorrhizal ones and differences were mostly statistically significant. A series of laboratory experiments was undertaken to investigate the effects of aqueous extracts from Euphorbia hirta on germination, radicle elongation, and haustorium initiation in P. ramosa. P. ramosa seeds conditioned in water and subsequently treated with diluted E. hirta extract (10-25% v/v) displayed considerable germination (47-62%). Increasing extract concentration to 50% or more reduced germination in response to the synthetic germination stimulants GR24 and Nijmegen-1 in a concentration dependent manner. P. ramosa germlings treated with diluted Euphorbia extract (10-75 % v/v) displayed haustorium initiation comparable to 2, 5-Dimethoxy-p-benzoquinon (DMBQ) at 20 µM. Euphorbia extract applied during conditioning reduced haustorium initiation in a concentration dependent manner. E. hirta extract or air-dried powder, applied to soil, induced considerable P. ramosa germination. Pot experiments were undertaken in a glasshouse at the University of Kassel, Germany, to investigate the effects of P. ramosa seed bank on tomato growth parameters. Different Phelipanche seed banks were established by mixing the parasite seeds (0 - 32 mg) with the potting medium in each pot. P. ramosa reduced all tomato growth parameters measured and the reduction progressively increased with seed bank. Root and total dry matter accumulation per tomato plant were most affected. P. ramosa emergence, number of tubercles, and tubercle dry weight increased with the seed bank and were, invariably, maximal with the highest seed bank. Another objective was to determine if different AM fungi differ in their effects on the colonization of tomatoes with P. ramosa and the performance of P. ramosa after colonization. Three AMF species viz. GIomus intraradices, Glomus mosseae and Glomus Sprint® were used in this study. For the infection, P. ramosa seeds (8 mg) were mixed with the top 5 cm soil in each pot. No mycorrhizal colonization was detected in un-inoculated control plants. P. ramosa infested, mycorrhiza inoculated tomato plants had significantly lower AMF colonization compared to plants not infested with P. ramosa. Inoculation with G. intraradices, G. mosseae and Glomus Sprint® reduced the number of emerged P. ramosa plants by 29.3, 45.3 and 62.7% and the number of tubercles by 22.2, 42 and 56.8%, respectively. Mycorrhizal root colonization was positively correlated with number of branches and total dry matter of tomatoes. Field experiments on tomato undertaken in 2010/12 were only partially successful because of insect infestations which resulted in the complete destruction of the second run of the experiment. The effects of the inoculation with AMF, the addition of 10 t ha-1 filter mud (FM), an organic residues from sugar processing and 36 or 72 kg N ha-1 on the infestation of tomatoes with P. ramosa were assessed. In un-inoculated control plants, AMF colonization ranged between 13.4 to 22.1% with no significant differences among FM and N treatments. Adding AMF or FM resulted in a significant increase of branching in the tomato plants with no additive effects. Dry weights were slightly increased through FM application when no N was applied and significantly at 36 kg N ha-1. There was no effect of FM on the time until the first Phelipanche emerged while AMF and N application interacted. Especially AMF inoculation resulted in a tendency to delayed P. ramosa emergence. The marketable yield was extremely low due to the strong fruit infestation with insects mainly whitefly Bemisia tabaci and tomato leaf miner (Tuta absoluta). Tomatoes inoculated with varied mycorrhiza species displayed different response to the insect infestation, as G. intraradices significantly reduced the infestation, while G. mosseae elicited higher insect infestation. The results of the present thesis indicate that there may be a potential of developing management strategies for P. ramosa targeting the pre-attachment stage namely germination and haustorial initiation using plant extracts. However, ways of practical use need to be developed. If such treatments can be combined with AMF inoculation also needs to be investigated. Overall, it will require a systematic approach to develop management tools that are easily applicable and affordable to Sudanese farmers. It is well-known that proper agronomical practices such as the design of an optimum crop rotation in cropping systems, reduced tillage, promotion of cover crops, the introduction of multi-microbial inoculants, and maintenance of proper phosphorus levels are advantageous if the mycorrhiza protection method is exploited against Phelipanche ramosa infestation. Without the knowledge about the biology of the parasitic weeds by the farmers and basic preventive measures such as hygiene and seed quality control no control strategy will be successful, however.