5 resultados para microRNAs (miRNAs)
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
RNA mediated gene silencing pathways are highly conserved among eukaryotes and they have been well investigated in animals and in plants. Longer dsRNA molecules trigger the silencing pathways: RNase III proteins and their dsRNA binding protein (dsRBP) partners recognize those molecules as a substrate and process 21 nucleotide long microRNAs (miRNAs) or small interfering RNAs (siRNAs). Some organisms encode RNA dependent RNA polymerases (RdRPs), which are able to expand the pool of existing siRNAs. Argonaute proteins are able to bind small regulatory RNAs and are subsequently recruited to target mRNAs by base complementary. This leads in turn to transcriptional or posttranscriptional silencing of respective genes. The Dictyostelium discoideum genome encodes two Dicer homologues (DrnA and DrnB), five Argonaute proteins (AgnA to AgnE) and three RdRPs (RrpA to RrpC). In addition, the amoeba is known to express miRNAs and siRNAs, while the latter derive mainly from the DIRS-1 retrotransposon. One part of this work focused on the miRNA biogenesis pathway of D. discoideum. It was shown that the dsRNA binding protein RbdB is a necessary component for miRNA processing in the amoeba. There were no mature miRNAs detectable by Northern blot analysis in rbdB- strains, which is also true for drnB mutants. Moreover, primary miRNA-transcripts (pri-miRNAs) accumulated in rbdB- and drnB- strains. Fluorescence microscopy studies showed a nuclear localization of RbdB. RbdB accumulated in distinct perinucleolar foci. These were reminiscent of plant dicing bodies that contain essential protein components for miRNA processing. It is well known that RNase III enzymes and dsRBPs work together during miRNA processing in higher eukaryotes. This work demonstrated that the same is true for members of the amoebozoa supergroup. In Arabidopsis the nuclear zinc finger protein Serrate (SE) is also necessary for miRNA processing. The D. discoideum homologue SrtA, however, is not relevant which has been shown by the analysis of the respective knockdown strain. MiRNAs are known to be differentially expressed in several RNAi knockout strains. The accumulation of miRNAs in agnA- strains and a strong decrease in rbdB- strains were criteria that could thus be successfully used (among others) to identify and validate new miRNAs candidates by Illumina®-RNA sequencing. In another part of this study, the silencing and amplification of the DIRS-1 retrotransposons was analyzed in more detail. It was already known that DIRS-1 transcripts and extrachromosomal DIRS-1 DNA molecules accumulated in agnA- strains. This phenotype was correlated with the loss of endogenous DIRS-1 siRNAs in the knockout strain. By deep sequencing analysis of small RNAs from the AX2 wild type and the agnA- strain, the strong decrease of endogenous DIRS-1 siRNAs in the mutant strain (accounting for 70 %) could be confirmed. Further analysis of the data revealed an unequal distribution of DIRS-1 derived siRNAs along the retroelement in the wild type strain, since only very few of them matched the inverted terminal repeats (ITRs) and the 5’- half of the first open reading frame (ORF). Besides, sense and antisense siRNAs were asymmetrically distributed, as well. By using different reporter constructs it was shown indirectly that AgnA is necessary for the RrpC mediated production of secondary DIRS-1 siRNAs. These analyses also demonstrated an amplification of siRNAs in 5’- and in 3’-direction. Further analysis of the agnA- strain revealed that not only DIRS-1 sense transcripts but also ORF2 and ORF3 encoded proteins were enriched. In contrast, the ORF1 encoded protein GAG was equally expressed in the mutant and the wild type. This might reflect the unequal distribution of endogenous DIRS-1 siRNAs along the retrotransposon. Southern Blot and PCR-analyses showed that extrachromosomal DIRS-1 DNA molecules are present in the cytoplasm of angA- strains and that they are complementary to sense transcripts of intact DIRS-1 elements. Thus, the extrachromosomal DIRS-1 intermediates are likely incomplete cDNA molecules generated by the DIRS-1 encoded reverse transcriptase. One could hypothesize that virus like particles (VLPs) are the places of DIRS-1 cDNA synthesis. At least, DIRS-1 GAG proteins interact and fluorescence microscopy studies showed that they localize in distinct cytoplasmic foci which accumulate in close proximity to the nuclei.
Resumo:
Dictyostelium discoideum is a social amoeba that serves as a model system for RNA interference and related mechanisms. Its position between plants and animals enables evolutionary snapshot of mechanisms and protein machinery involved in investigated subjects. MiRNAs are small regulatory RNAs that are evolutionary conserved and present in animals, plants, viruses and some prokaryotes. They have roles in development, cell growth and differentiation, apoptosis and their miss-regulation is associated with many diseases such as cancer, neurodegenerative disorders and diabetes. Recently, through sequencing of DNA libraries miRNAs have been discovered in D. discoideum. In this work, it has been shown that heterologues miRNA let-7 can be expressed and processed in D. discoideum. Expression of let-7 miRNA in social amoeba resulted in a strong developmental phenotype suggesting an overload of the processing/silencing system or/and endogenous targets. The various effects on prel-7 strain have been observed and characterized, serving as a background for postulation of miRNA roles. An artificial miRNA system has been established and imposed to D. discoideum, showing that miRNAs in Dictyostelium could mediate gene expression on the level of mRNA stability and on the posttranscriptional level. Furthermore, presence of translational inhibition as a type of gene control was shown for the first time in this organism. Due to it new structures representing co-localities of miRNA and target mRNA have been detected. Taken together, this work shows functional artificial miRNA system and postulates roles of endogenous small RNA in social amoeba.
Resumo:
Argonauten Proteine übernehmen vielfältige Funktionen in RNA vermittelten Signalwegen zur Genregulation und sind in eukaryotischen Organismen hoch konserviert. Obwohl das Repertoire an kleinen regulatorischen RNAs in D. discoideum schon früh untersucht wurde und dabei sowohl siRNAs als auch miRNAs identifiziert werden konnten, war die Funktion der fünf kodierten Argonauten Proteine zu Beginn meiner Arbeit noch völlig unbekannt. Im Fokus meiner Untersuchung standen die zwei Homologe AgnA und AgnB. Die molekularbiologische Charakterisierung von AgnA hat gezeigt, dass das Protein eine essentielle Funktion bei der posttranskriptionellen Regulation des Retrotransposons DIRS-1 hat. AgnA wird für die Generierung von über 90 % der DIRS-1 siRNAs benötigt, wobei unklar ist, ob die Slicer-Aktivität des Proteins relevant ist oder ob AgnA andere Proteine zur Generierung der kleinen RNAs rekrutiert. Mit Hilfe der Deep Sequencing Analyse kleiner RNAs im AgnA KO konnte die Abreicherung der DIRS-1 siRNAs bestätigt werden. Die Anreicherung von DIRS-1 sense und antisense Transkripten weist deutlich auf eine Deregulation des Retrotransposons bei Abwesenheit von AgnA hin. Der Verlust der AgnA abhängigen Regulationsebene ist nicht nur auf RNA- sondern auch auf DNA-Ebene nachweisbar, da im AgnA Knockout einzelsträngige extrachromosomale DIRS-1 Intermediate nachweisbar sind. Die Analyse dieser Strukturen mit Hilfe von Rasterkraftmikroskopie zeigt, dass die extrachromosomale DNA mit Proteinen assoziiert ist. Das Erscheinungsbild legt die Vermutung nahe, dass es sich um Virus ähnliche Partikel handeln könnte. Die Transposition der DIRS-1 Elemente konnte nicht nachgewiesen werden. Sie schlägt vermutlich fehl, da der zur Integration notwendige DNA-Doppelstrang nicht gebildet wird. Auch wenn der genaue Mechanismus der AgnA abhängigen DIRS-1 Regulation nicht vollständig aufgeklärt werden konnte, weisen die Ergebnisse darauf hin, dass AgnA nicht nur an der Biogenese der kleinen DIRS-1 siRNAs beteiligt ist, sondern auch weiter downstream, vermutlich innerhalb von Effektorkomplexen, als Regulator aktiv ist. AgnB ist nicht an der negativen Regulation des DIRS-1 Retrotransposons beteiligt. Im Gegenteil haben Experimente gezeigt, dass das Protein die Transkription des Elementes und die Bildung von DNA-Intermediaten eher positiv beeinflusst. Im Fall des Retrotransposons Skipper ist unklar, ob die wenigen siRNAs, die identifiziert worden sind, tatsächlich für die Regulation dieses Elementes genutzt werden. Der Knockout von AgnA hat eine Anreicherung der Skipper siRNAs zur Folge, wobei diese sehr variabel ist. Es konnten Skipper Transkripte nachgewiesen werden (Hinas et al., 2007), die wahrscheinlich die Vorläufermoleküle der siRNAs darstellen. Die Menge dieser Transkripte unterscheidet sich allerdings im Wildtyp und den untersuchten Knockout-Stämmen nicht. Bei der Untersuchung der miRNAs zeigte sich eine signifikante Anreicherung dieser regulatorischen RNAs im AgnA Knockout. Die Akkumulation kann durch die Expression von rekombinantem AgnA wieder auf Wildtyp Niveau gebracht werden. Die genaue Funktion von AgnA im miRNA Signalweg konnte aber nicht näher spezifiziert werden. Im Fall der beiden miRNAs konnte im Rahmen dieser Arbeit nachgewiesen werden, dass sie keine 2‘-O Methylierung besitzen und fast ausschließlich im Cytoplasma der Zelle vorliegen. Letzteres weist darauf hin, dass die untersuchten miRNAs ihre Zielgene vermutlich posttranskriptionell regulieren. Die Akkumulation von miRNAs im AgnA KO konnte ebenfalls durch Deep Sequencing Analysen verifiziert werden. Weiterhin wurden tRNA Fragmente gefunden, die im AgnA KO wesentlich stärker vertreten sind. Northern Blot Analysen haben gezeigt, dass ein zusätzliches Fragment der tRNA Asp akkumuliert, wenn AgnA nicht exprimiert wird. Möglicherweise ist AgnA am Umsatz der tRNA beteiligt. Die biologische Funktion der tRNA Fragmente in D. discoideum ist jedoch bisher ungeklärt. Bei der Suche nach putativen Interaktionspartnern konnte im Fall von AgnA das Protein DDB_G0268914 mittels Massenspektrometrie als putativer Interaktionspartner identifiziert werden. Dieses Protein zeigt Homologien zu MOV10 aus H. sapiens, das ebenfalls mit Argonauten Proteinen interagiert (Hock et al., 2007) und die Replikation von Retroviren unterdrückt (Burdick et al., 2010). Die Interaktion zwischen AgnA und dem MOV10 Homolog konnte bisher nicht mit anderen Ansätzen bestätigt werden. Darüber hinaus bleibt zu klären, ob der putative Interaktionsparter ebenfalls an der Regulation des Retrotransposons DIRS-1 beteiligt ist.
Resumo:
Hauptziel dieser Arbeit ist die Identifizierung, Verifizierung und Charakterisierung von Interaktionspartnern von HelF, einem Negativregulator der RNA-Interferenz in Dictyostelium discoideum (Popova et al. 2006). Es ist gelungen, die Interaktion von HelF und der 5‘ 3‘ Exonuklease Xrn1 nachzu-weisen, aber alle anderen Versuchen, bisher unbekannte Protein-Interaktionspartner zu identifizieren, schlugen fehl. Xrn1 ist in den Organismen D. melanogaster (Orban und Izaurralde 2005), C. elegans (Newbury und Woollard 2004) und A. thaliana (Gazzani et al. 2004) bereits als Regulator der RNA-Interferenz bekannt. Mit Aufreinigungen nach der TAP-Methode und mit dem Nanotrap wurde ebenfalls versucht, RNA-Interaktionspartner von HelF zu identifizieren. Es konnten in einigen Aufreinigungen putative, für HelF spezifische RNAs identifiziert werden, doch entweder es handelte sich nachweislich nicht um RNA oder die Reproduktion der Daten schlug trotz mehrfacher Versuche fehl. Bezüglich der zellulären Lokalisation von HelF und Xrn1 konnte gezeigt werden, dass HelF zusätzlich zur bekannten Lokalisation in Foci im Nukleus (Popova et al. 2006) vermutlich auch im Cytoplasma und dort angeordnet in mehreren Granula zu finden ist. Xrn1 ist nahezu ausschließlich im Cytoplasma lokalisiert, wo es in mehreren Foci organisiert ist. Es wird vermutet, dass es sich bei diesen Foci um Processing-Bodies (P-Bodies) handelt und dass möglicherweise Xrn1 und HelF in eben diesen P-Bodies co-lokalisieren. In der Entwicklung vom Einzeller zum mehrzelligen Organismus zeigen die Xrn1KO- und die HelFKO-Mutante jeweils einen eindeutigen Phänotyp, der vom Wildtyp abweicht. Die Phänotypen der beiden Mutanten unterscheiden sich deutlich voneinander. Beim Mischen von HelF-Knockout-Zellen mit grün fluoreszierenden Wildtyp-Zellen zeigt sich, dass beide Stämme innerhalb des sich entwickelnden Organismus an definierten Stellen lokalisieren. Entgegen den Erwartungen befinden sich die Zellen der Mutante in den Stadien „Finger“ und „Slug“ nicht hauptsächlich im vorderen Teil des Organismus, sondern sind auch im hinteren Teil, der später die Sporenmasse bildet, vertreten. Dies lässt vermuten, dass HelF-Knockout-Mutanten in gleichem Maße wie Wildtypzellen als Sporen in die nächste Generation übergehen. Weitere Mix-Experimente, in denen HelFKO-Zellen und Xrn1KO-Zellen mit grün fluoreszierenden Wildtypzellen gemischt wurden, belegen eindeutig, dass beide Knockoutmutanten in Konkurrenz zum Wildtyp bei der Generierung von Sporen und somit beim Übergang in die nächste Generation benachteiligt sind. Dies steht im Gegensatz zu den Ergebnissen der vorher beschriebenen Mix-Experimente, in denen der Organismus als Ganzes betrachtet wurde. Weiterhin konnte herausgefunden werden, dass Xrn1 ebenso wie HelF (Popova et al. 2006) eine Rolle als Negativregulator in der RNA-Interferenz innehat. Fraglich ist aber, ob HelF wie bisher angenommen auch Einfluss auf den Weg der Generierung von miRNAs nimmt, da in HelFKO für keinen der beiden miRNA-Kandidaten eine Hoch- bzw. Runterregulierung der reifen miRNAs im Vergleich zum Wildtyp beobachtet werden kann. Im Xrn1KO hingegen ist die reife miRNA ddi-mir-1176 im Vergleich zum Wildtyp hochreguliert. In Bezug auf die Generierung von siRNAs konnte herausgefunden werden, dass Xrn1 und HelF im Fall der Generierung von Skipper siRNAs regulierend eingreifen, dass aber nicht alle siRNAs von der negativen Regulierung durch HelF und Xrn1betroffen sind, was am Beispiel der DIRS-1-siRNAs belegt werden kann. Das von B. Popova entwickelte Modell (Popova 2005) bezüglich der Rolle von HelF in der RNA-Interferenz wurde basierend auf den neu gewonnenen Daten weiterentwickelt und um Xrn1 ergänzt, um die Funktionen von HelF und Xrn1 als Antagonisten der RNA-Interferenz näher zu beleuchten. Literatur: Gazzani, S., T. Lawrenson, et al. (2004). "A link between mRNA turnover and RNA interference in Arabidopsis." Science 306(5698): 1046-8. Newbury, S. and A. Woollard (2004). "The 5'-3' exoribonuclease xrn-1 is essential for ventral epithelial enclosure during C. elegans embryogenesis." Rna 10(1): 59-65. Orban, T. I. and E. Izaurralde (2005). "Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome." Rna 11(4): 459-69. Popova, B. (2005). HelF, a suppressor of RNAi mediated gene silencing in Dictyostelium discoideum. Genetik. Kassel, Universität Kassel. PhD: 200. Popova, B., M. Kuhlmann, et al. (2006). "HelF, a putative RNA helicase acts as a nuclear suppressor of RNAi but not antisense mediated gene silencing." Nucleic Acids Res 34(3): 773-84.
Resumo:
Die RNA-Interferenz (RNAi) ist ein in Eukaryoten weit verbreiteter Mechanismus, der die transkriptionelle oder posttranskriptionelle Stilllegung von Genen beschreibt. Die Spezifität wird dabei durch die Sequenz einer kleinen, nicht-kodierenden RNA gewährleistet. Diese RNA leitet einen Effektorkomplex, dessen Zentrum immer von einem Argonautenprotein gebildet wird, üblicherweise zu einer komplementären mRNA. In der Folge kommt es zum Abbau des Transkripts oder zur Inhibierung der Translation. Aktuelle Veröffentlichungen konnten zudem das Aktivitätsprofil der Argonautenproteine beträchtlich erweitern: Im Zellkern vorkommende Argonautenproteine wurden beispielsweise mit Spleißvorgängen, der Promotorkontrolle von Genen und der DNA-Reparatur in Verbindung gebracht. In den letzten Jahren konnten weitreichende Kenntnisse bezüglich der Kontrolle einiger transposabler Elemente durch RNAi sowie der Biogenese kleiner regulatorischer RNAs in Dictyostelium discoideum und anderen Organismen gewonnen werden. Ein Fokus dieser Arbeit lag zunächst auf der Charakterisierung des Argonautenproteins AgnB und der Identifikation von Interaktionspartnern. Es konnte gezeigt werden, dass AgnB zumindest partiell im Zellkern der Amöbe lokalisiert und dort vermutlich regulatorische Aufgaben wahrnimmt. Gestützt wurde diese Annahme durch die massenspektrometrische und Western Blot basierte Detektion nukleärer Bindungspartner. Weiterführende Analysen konnten AgnB zudem als positiven Regulator für drei entwicklungsregulierte Gene beschreiben und so die Verbindung zum Prozess der RNA activation in der Amöbe herstellen. Identifizierte posttranslationale Modifikationen könnten diesbezüglich die Aktivität des Argonauten steuern. Mit Hilfe von Crosslink-RNA-Immunopräzipitation und anschließender Hochdurchsatz-sequenzierung oder der Northern Blot basierten Auswertung konnte eine Assoziation von AgnB und der Class I RNAs gezeigt werden. Diese Klasse umfasst nicht-kodierende RNAs mit einer Länge von etwa 42 bis 65 Nukleotiden und wurde bisher nicht als Substrat für die RNAi-Maschinerie in D. discoideum angesehen. Ein weiterer Teil dieser Arbeit beschäftigte sich mit dem Einfluss von AgnA und AgnB auf die Promotorbereiche des D. discoideum Retrotransposons DIRS-1. Im Verlauf der Untersuchungen konnte beobachtet werden, dass die Anordnung entgegengesetzt operierender DIRS-1 Promotor-sequenzen für die Stilllegung eines Reportergens ausreichend war. Darauf aufbauend konnte ein DIRS-1 basiertes knockdown System etabliert werden. Mit Hilfe dieses Systems konnten die Proteinmengen ausgewählter Zielgene so effektiv reduziert werden, dass die entsprechenden Stämme den Phänotyp des korrespondierenden knockout Stammes zeigten. Darüber hinaus war es möglich die Proteinreduktion zu modulieren, um so beispielsweise dosisabhängige Effekte zu registrieren. Vorangegangene Arbeiten zur Biogenese von micro (mi)RNAs konnten das RNA-bindende Protein RbdB als eine Hauptkomponente für die Prozessierung maturer miRNAs identifizieren. Der miRNA defiziente RbdB- Stamm wurde in dieser Arbeit zur Identifikation putativer miRNA Ziele genutzt. Dazu wurde sowohl das Transkriptom des D. discoideum Wildtyps als auch des rbdB knockout Stammes in hohem Durchsatz sequenziert, um so differentiell exprimierte Gene zu detektieren. Vielversprechende Kandidaten wurden mittels qRT-PCR verifiziert. Dabei wurde unter anderem ein putativer Transkriptionsfaktor als miRNA target identifiziert, der eine Vielzahl weiterer Gene regulieren könnte. Abschließend konnte in dieser Arbeit gezeigt werden, dass RbdB ebenfalls für die Generierung von small interfering (si)RNAs aus strukturierten Loci von Bedeutung ist. Dies weist auf mindestens zwei unterschiedliche Mechanismen zur siRNA Prozessierung in D. discoideum hin.