1 resultado para mesofauna
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Die vorliegende Arbeit untersuchte die Einflüsse der Bodenart und Einarbeitungstiefe von Streu auf die mikrobielle Nutzung und ihren Abbau. Anhand einer Kohlenstoffsequestrierung wurde die Verlagerung streubürtigen Kohlenstoffes in die Fraktionen CO2-C, SOC, extrahierbaren Kohlenstoff, Cmik und POM-C betrachtet. Aufgrund der Analyse der δ13C-CO2 Werte der Bodenrespiration, im Rahmen der Sequestrierung des streubürtigen Kohlenstoffes, war der Anteil der streubürtigen Bodenrespiration und somit die gesamte, zu erwartende Bodenrespiration bekannt. Durch die, bei der Kohlenstoffsequestrierung, ermittelten Werte konnte eine Plausibilitätsprüfung an vier Methoden zur Erfassung der Bodenrespiration, auf ihre Genauigkeit und mögliche Artefakte hin, durchgeführt werden. Des Weiteren wurden in einem anschließenden Freilandversuch unter subtropischen Bedingungen die Einflüsse verschiedener Dünger und Feldfrüchte, in Abhängigkeit der Streuqualität, auf den Streuabbau und die mikrobielle Besiedelung hin untersucht. Im ersten Versuch (Kapitel 3), wurde anhand eines Säulenversuches der Einfluss der Einarbeitungstiefe, in Anhängigkeit der Bodenart, auf den Streuabbau untersucht. Dieses ist von großer Bedeutung, da auf landwirtschaftlich genutzten Flächen Streu und so genannte "Grüne Dünger" durch den Einsatz unterschiedlicher Bodenbearbeitungssysteme, wie z.B. der Kreiselegge oder dem Wendepflug, in unterschiedliche Tiefen eingearbeitet werden. Die Verlagerung streubürtigen mikrobiellen Kohlenstoffes per Pilzhyphen, über eine Distanz von bis zu 20 cm wurde innerhalb dieser Arbeit das erste Mal gezeigt. Bisherige Studien zeigten einzig einen Transport von streubürtigem Kohlenstoff per Pilzhyphen, über eine kurze Distanz von der Detritussphäre in den angrenzenden Boden. Der höhere Anteil streubürtigen mikrobiellen Kohlenstoffes innerhalb der von der Streuschicht weiter entfernten Schichten im sandigen Boden, im Vergleich zum lehmigen Boden zeigte, dass das feine Porenvolumen des lehmigen Bodens den Transport Streubürtigen Kohlenstoffes per Pilzhyphen grundsätzlich behindert. Diese Annahme wurde durch die stärkere Abnahme des Anteils streubürtigen mikrobiellen Kohlenstoffes, mit zunehmender Entfernung zur Streuschicht, im lehmigen Boden im Vergleich zum sandigen Boden unterstützt. Es ist davon auszugehen, dass der sandige Boden zusätzlich durch die höhere Porosität eine erhöhte Sauerstoffdurchlässigkeit und somit, in den tieferen Schichten bessere Wachstumsbedingungen für Mikroorganismen bietet als der lehmige Boden. Durch die Ausbreitung substratbürtigen mikrobiellen Kohlenstoffes wurde im sandigen Boden mehr streubürtiger Kohlenstoff durch Mikroorganismen inkorporiert als im lehmigen Boden. Ein weiterer Grund für die geringere Verlagerung von streubürtigem Kohlenstoff in die mikrobielle Biomasse des lehmigen Bodens ist wahrscheinlich der bessere physikalische Schutz durch den höheren Tonanteil. Durch die Einarbeitung der Streu stieg in allen Ansätzen der Gehalt an Ergosterol, welcher ein wesentlicher Indikator für die Präsenz saprotropher Pilze ist. Besonders stark ausgeprägt war der Anstieg des Ergosterolgehaltes, sowie des Ergosterol / mikrobielle Biomasse C – Quotienten, wenn Streu in die untere Schicht (15 - 20 cm) ein-gearbeitet wurde. Diese tiefenspezifischen Unterschiede wurden bisher in noch keinem weiteren Versuch beobachtet und können auf die Entwicklung unterschiedlicher pilzlicher Gemeinschaften zurück zu führen sein. Es ist jedoch wahrscheinlicher, dass pilzliche Nekromasse in den oberen Bodenschichten schneller umgesetzt wird und somit bei der Ergosterolbestimmung nicht mit erfasst wird. Da der Umsatz der pilzlichen Nekromasse im porösen sandigen Boden, aufgrund der höheren Sauerstoffverfügbarkeit und des geringeren physikalischen Schutzes, vermutlich höher ist als im lehmigen Boden, wird diese Annahme durch den im sandigen Boden geringeren Gehalt an mikrobiellen Kohlenstoff unterstützt. Wie erwartet, überstieg die Mineralisation der Streu im sandigen Boden die der im lehmigen Boden. Jedoch anders als erwartet, unterschied sich die Mineralisation in Abhängigkeit der Einarbeitungstiefe, mit einer erhöhten Mineralisation bei Einarbeitung der Streu in 0 - 5 cm Tiefe, einzig im sandigen Boden. Die Berechnung des Ertragskoeffizienten zeigte, dass die Substratsnutzungseffizienz der Mikroorganismen im sandigen Boden signifikant geringer war als die im lehmigen Boden. Die Zugabe von Streu führte in beiden Böden, verstärkt jedoch im lehmigen Boden, zu einem positiven Priming Effekt, der in beiden Bö-den stärker ausgeprägt war, als Streu in 0–5 cm Tiefe eingearbeitet wurde. Trotz Abnahme der SOC-bürtigen mikrobiellen Biomasse stieg die Mineralisation des SOC stark an. Es ist anzunehmen, dass extrazelluläre Enzyme wie Cellulase und Lignin modifizierende Enzy-me, produziert von saprotrophen Pilzen, zum Abbau von Cellolose und Lignin der Streu, zum Teil sehr effizient SOC abbauen. Im zweiten Versuch (Kapitel 4) wurde anhand des gleichen Säulenversuches (Versuch 1; Kapitel 3) der Einfluss der Entfernung von CO2-hot-spots im Boden zur Bodenoberfläche, in Abhängigkeit der Bodenart, auf vier verschiedene Methoden zur Erfassung der Bodenrespiration betrachtet. Zusätzlich wurde durch eine Plausibilitätsprüfung anhand der Kohlenstoffbilanz, basierend auf der in Versuch 1 durchgeführten Kohlenstoffsequestrierung, die Genauigkeit der vier Methoden in Abhängigkeit der Bodenart überprüft. Für beide Ansätze mit sandigem Boden zeigen IR und PAS eine deutliche Überschätzung der mit NaOH und GC bestimmten Bodenrespiration. Die Überschätzung durch IR ist dabei auf die durch die dynamische Haube verursachten Turbulenzen und deren Auswirkungen auf den porösen sandigen Boden zurück zu führen. Bei geringen Respirationsraten, wie bei der Kontrolle, zeigt die Messung mittels IR trotz Turbulenzen, verursacht durch den Ventilator der Haube, keine Überschätzung. Die Überschätzung durch PAS hingegen kann nicht auf Turbulenzen, verursacht durch die dynamische Haube, zurück geführt werden, da bei den Analysen mit PAS und GC identische Hauben, höher und größer als bei IR, eingesetzt wurden und die Bodenrespiration durch GC nicht überschätzt wurde. Im Gegensatz zu beiden sandigen Ansätzen überschätzt IR die Bodenrespiration im lehmigen Boden nicht. NaOH hingegen unterschätzt die Bodenrespiration, wenn Streu in 15-20 cm Tiefe des lehmigen Bodens eingearbeitet ist. Dieses ist dadurch zu erklären, dass, bedingt durch die geringere Porosität sowie das höhere Wasserhaltevermögen und dem daraus resultierenden geringeren Luft gefüllten Porenvolumen, die Diffusion von CO2 im lehmigen Boden langsamer ist als im sandigen Boden. Nach Absorption des CO2 der Haubenluft diffundiert das CO2 des CO2-hot-spots in 15-20 cm Tiefe, entlang des Diffusionsgradienten, aufgrund des Diffusionswiderstandes in lehmigen Boden langsamer zur Oberfläche als im sandigen Boden oder wenn der CO2-hot-spot direkt unter der Bodenoberfläche liegt. Da bei der Messung mit der dynamischen Haube diese nur kurz auf der Fläche verbleibt, beeinflusst der Diffusionsgradient diese Messungen nicht. Hinzukommt, dass bei den Messsystemen, die in Kombination mit der dynamischen Haube eingesetzt werden, im Gegensatz zur Absorption durch Lauge keine CO2 Abreicherung stattfindet und die Diffusion von CO2 aus dem Boden über lange Zeit bis zu hohen CO2 Konzentration in der Haube linear bleibt. Alle drei mit einer dynamischen Haube kombinierten Methoden zeigen mit Korrelations-koeffizienten zwischen 0,90 und 0,93 starke Korrelationen mit NaOH. Während PAS die Bodenrespiration im Verhältnis zu NaOH immer überschätzt, tritt eine Überschätzung durch GC nur bei Mineralisationsraten unter 500 mg m-2 h-1 und für IR bei Mineralisations-raten über 40 mg m-2 h-1 ein. Die Plausibilitätsprüfung zeigt, dass für sandigen Boden, mit NaOH und GC eine sehr exakte Wiederfindung von Kohlenstoff erreicht wird, wohingegen IR und PAS in der Wiederfindung von Kohlenstoff bei deutlich über 100 % liegen. Für den lehmigen Boden hingegen ist nach Entfernung der CO2-hot-spots zur Bodenoberfläche zu differenzieren. Befindet sich der CO2-hot-spot direkt unter der Bodenoberfläche ist die Wiederfindung von Kohlenstoff für NaOH, GC und IR sehr exakt. Befindet sich der CO2-hot-spot jedoch in 15-20 cm Tiefe, ist die Wiederfindung des Kohlenstoffes durch NaOH deutlich unter 100 %. Die Wiederfindung durch PAS liegt sowohl für den sandigen als auch für den lehmigen Boden immer deutlich über 100 %. Im dritten Versuch (Kapitel 5), wurde anhand eines Litterbag-Versuches im Norden des Omans, der Einfluss verschiedener Dünger und Feldfrüchte auf den Abbau von Streu auf landwirtschaftlich genutzten Flächen in Abhängigkeit der Streuqualität betrachtet. Bei dem Großteil bisheriger Streuabbauversuche, unter gemäßigten und subtropischen Klimaten, stand der Abbau von Streu im Wald im Fokus der Betrachtung. Die wenigen Versuche zum Streuabbau auf landwirtschaftlich genutzten Flächen beschränken sich auf die gemäßigten Klimate. Wohingegen der Abbau von Streu, sowie der Einfluss von Dünger und Feldfrucht unter subtropischen Bedingungen, zum ersten mal mit der vorliegenden Arbeit fokussiert wurde. Der Verlust an organischem Material war verglichen mit Versuchen un-ter gemäßigten Klimaten, bei allen vier Streuarten, generell hoch. Der höhere Abbau von Luzernen- und Maisstreu im Vergleich zu Raps- und Weizenstreu ist auf Unterschiede der Streuqualität zurückzuführen. Neben der Verwertbarkeit durch Mikroorganismen beeinflusst die Streuqualität zusätzlich die "Schmackhaftigkeit" der Streu für Organismen der Mesofauna. Wodurch ein selektiver Transport und/oder Grazing von Mikroorganismen stattfindet. Der geringere Abbau der Luzernenstreu verglichen mit Maisstreu jedoch ist nicht auf die Streuqualität sondern auf die geringere mikrobielle Besiedelung der Luzernenstreu während der Versuchszeit zurückzuführen. Der Unterschied im Grad der mikrobiellen Besiedelung kann durch die erhobenen Daten nicht erklärt werden. Es ist jedoch davon auszugehen, dass Leguminosen Substanzen wie z.B. Polyphenole enthalten, welche die mikrobielle Biomasse und im Besonderen die pilzliche Biomasse in beachtlichem Umfang inhibitieren. Ebenso wenig ist der höhere Abbau von Weizenstreu verglichen mit Rapsstreu durch die Streuqualität zu begründen. Eine mögliche Erklärung für den geringeren Abbau der Rapsstreu kann ihr hoher Aluminium Gehalt sein. Es ist jedoch wahrscheinlicher, dass die Rapsstreu organische Substanzen wie Glucosinolate enthält, welche den mikrobiellen Streuabbau inhibitieren. Während der Hemicellulosegehalt am Ende des Versuches nicht durch die Streuqualität beeinflusst war, zeigten Cellulose und Lignin quali-tätsabhängige Effekte. Der stärkere Abbau von Cellulose bei Luzernen- und Maisstreu ist auf den anfänglich höheren Stickstoffgehalt zurückzuführen, wodurch die Produktion und Aktivität von Cellulose degradierenden Enzymen, wie Exo-Cellulase, Endo-Cellulase und Xylanase, anstieg. Es ist davon auszugehen, dass die Differenzen im Celluloseabbau von Luzernen- und Maisstreu im Vergleich zu Raps- und Weizenstreu, neben Unterschieden im anfänglichen Stickstoffgehalt, auf den höheren Schutz von Cellulose durch Lignin in Raps- und Weizenstreu zurückzuführen sind. Während der initial geringe Stickstoffgehalt den Ligninabbau in Raps- und Weizenstreu unterstützt, ist die relative Anreicherung von Lignin in Luzernen- und Maisstreu hingegen auf den initial hohen Stickstoffgehalt zurückzuführen. Dem entgegen hat die Zusammensetzung weiterer Nährstoffe einen sehr geringen Effekt. Es ist jedoch möglich, dass stärkere Effekte durch den Eintrag von Boden in die Litterbags durch Organismen der Mesofauna, Wurzelwachstum oder physikalische Verlagerung überdeckt werden. Während unter organische Düngung, die pilzliche Biomasse ansteigt, fördert der leicht verfügbare Stickstoff der mineralischen Düngung die Bildung bakterieller Biomasse. Der höher Gehalt an pilzlicher Biomasse unter organischer Düngung zeigte keinen generellen Effekt auf den Abbau von Kohlenstoff. Er führte jedoch zu einer Veränderung in der Streuzusammensetzung. Die verringerte Abnahme bzw. verstärkte Zunahme der Nährstoffgehalte bei organischer Düngung ist durch den Eintrag dünger-bürtiger Nährstoffe, im Besonderen durch die verstärkte Bildung pilzlicher Hyphen in die Litterbags hinein, zu erklären. Trotz höherer Gehalte an pilzlicher Biomasse war der Ligningehalt am Ende des Versuches unter organischer Düngung höher als unter mineralischer Düngung. Diese ist auf den Eintrag düngerbürtiger Pilze zurückzuführen, welche eine geringere Lignindegradierungseffizienz aufweisen. Der Einfluss der Feldfrucht auf den Streuabbau äußert sich durch höhere Gehalte mikrobieller und im Besonderen pilzlicher Biomasse, und durch geringere Gehalte an N, P, Ca, Na und K in, im Litterbag verbleiben-der Streu, unter dem Anbau von Mohrrüben. Der Anstieg der pilzlichen Biomasse führt, ebenso wie bei der organischen Düngung zu keinem generellen Anstieg der Kohlenstoffdegradation, zeigt jedoch einen selektiven Effekt auf den Abbau von Cellulose. Der Einfluss, sowohl auf die mikrobielle Biomasse, als auch auf den Nährstoffgehalt, zeigt die Bedeutung der Unterschiede im Wurzelwachstum, der Rhizodeposition sowie des Nährstoffbedarfs in Abhängigkeit der Feldfrucht. Trotz großer Unterschiede der Streuarten im anfänglichen Gehalt mikrobieller Biomasse war dieser am Ende des Versuches für alle Streuarten identisch. Dieses war Folge eines starken Anstiegs der pilzlichen Biomasse bei Luzernen- und Maisstreu sowie einer Abnahme der pilzlichen Biomasse bei Raps- und Weizenstreu, welche zuvor noch nicht beobachtet wurde. Dieses macht den Einfluss der anfänglichen mikrobiellen Biomasse auf deren Entwicklung während des Streuabbauprozesses im Boden deutlich. Es ist anzunehmen, dass ein Teil der anfänglichen pilzlichen Biomasse der Raps- und Weizenstreu, welche sich unter gemäßigten Klimaten entwickelte, unter subtropischen Bedingungen nicht überlebensfähig war. Generell war der Streuabbau durch Pilze dominiert. Es zeigte sich jedoch, dass Unterschiede im Pflanzenmaterial einen Einfluss auf die bakterielle Biomasse hatten, Unterschiede in Düngung und Feldfrucht hingegen die pilzliche Biomasse und die bakterielle Biomasse beeinflussten.