6 resultados para means clustering

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many recent Web 2.0 resource sharing applications can be subsumed under the "folksonomy" moniker. Regardless of the type of resource shared, all of these share a common structure describing the assignment of tags to resources by users. In this report, we generalize the notions of clustering and characteristic path length which play a major role in the current research on networks, where they are used to describe the small-world effects on many observable network datasets. To that end, we show that the notion of clustering has two facets which are not equivalent in the generalized setting. The new measures are evaluated on two large-scale folksonomy datasets from resource sharing systems on the web.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aktuelle Entwicklungen auf dem Gebiet der zielgerichteten Therapie zur Behandlung maligner Erkrankungen erfordern neuartige Verfahren zur Diagnostik und Selektion geeigneter Patienten. So ist das Ziel der vorliegenden Arbeit die Identifizierung neuer Zielmoleküle, die die Vorhersage eines Therapieerfolges mit targeted drugs ermöglichen. Besondere Aufmerksamkeit gilt dem humanisierten monoklonalen Antikörper Trastuzumab (Herceptin), der zur Therapie Her-2 überexprimierender, metastasierter Mammakarzinome eingesetzt wird. Jüngste Erkenntnisse lassen eine Anwendung dieses Medikamentes in der Behandlung des Hormon-unabhängigen Prostatakarzinoms möglich erscheinen. Therapie-beeinflussende Faktoren werden in der dem Rezeptor nachgeschalteten Signaltransduktion oder Veränderungen des Rezeptors selbst vermutet. Mittels Immunhistochemie wurden die Expressions- und Aktivierungsniveaus verschiedener Proteine der Her-2-assoziierten Signaltransduktion ermittelt; insgesamt wurden 37 molekulare Marker untersucht. In Formalin fixierte und in Paraffin eingebettete korrespondierende Normal- und Tumorgewebe von 118 Mammakarzinom-Patientinnen sowie 78 Patienten mit Prostatakarzinom wurden in TMAs zusammengefasst. Die in Zusammenarbeit mit erfahrenen Pathologen ermittelten Ergebnisse dienten u.a. als Grundlage für zweidimensionales, unsupervised hierarchisches clustering. Ergebnis dieser Analysen war für beide untersuchten Tumorentitäten die Möglichkeit einer Subklassifizierung der untersuchten Populationen nach molekularen Eigenschaften. Hierbei zeigten sich jeweils neue Möglichkeiten zur Anwendung zielgerichteter Therapien, deren Effektivität Inhalt weiterführender Studien sein könnte. Zusätzlich wurden an insgesamt 43 Frischgeweben die möglichen Folgen des sog. shedding untersucht. Western Blot-basierte Untersuchungen zeigten hierbei die Möglichkeit der Selektion von Patienten aufgrund falsch-positiver Befunde in der derzeit als Standard geltenden Diagnostik. Zusätzlich konnte durch Vergleich mit einer Herceptin-sensitiven Zelllinie ein möglicher Zusammenhang eines Therapieerfolges mit dem Phosphorylierungs-/ Aktivierungszustand des Rezeptors ermittelt werden. Fehlende klinische Daten zum Verlauf der Erkrankung und Therapie der untersuchten Patienten lassen keine Aussagen über die tatsächliche Relevanz der ermittelten Befunde zu. Dennoch verdeutlichen die erhaltenen Resultate eindrucksvoll die Komplexität der molekularen Vorgänge, die zu einem Krebsgeschehen führen und damit Auswirkungen auf die Wirksamkeit von targeted drugs haben können. Entwicklungen auf dem Gebiet der zielgerichteten Therapie erfordern Verbesserungen auf dem Gebiet der Diagnostik, die die sichere Selektion geeigneter Patienten erlauben. Die Zukunft der personalisierten, zielgerichteten Behandlung von Tumorerkrankungen wird verstärkt von molekularen Markerprofilen hnlich den hier vorgestellten Daten beeinflusst werden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Verordnung des Europäischen Rates (EC) 834/2007 erkennt das Recht des Konsumenten auf eine Entscheidung basierend auf vollständiger Information bezüglich der enthaltenen Zutaten im Produkt und deren Herkunft (Qualität der Verarbeitung). Die primäre Kennzeichnungsverordnung betont „organische“ Produktionsstandards ebenso wie die Notwendigkeit zur Kontrolle und Aufsicht. Jedoch ist zurzeit keine validierte Methode zur analytischen Diskriminierung zwischen „organischer“ und „konventioneller“ Herkunft von angebotenen Lebensmitteln verfügbar. Das Ziel der Dissertationsarbeit war die Überprüfung der Möglichkeit mit ausgewählten analytischen und holistischen Methoden zwischen organisch und konventionell angebautem Weizen objektiv zu unterscheiden. Dies beinhaltete die Bestimmung des Gesamtstickstoff (Protein) nach Dumas, zweidimensionale Fluoreszenzdifferenz Gelelektrophorese (2D DIGE) und die Kupferchloridkristallisation. Zusätzlich wurde die Anzahl der Körner pro Ähre (Kornzahl) bestimmt. Alle Bestimmungen wurden an rückverfolgbaren in den Jahren 2005 – 2007 in Belgien gesammelten Proben des Winterweizen (Triticum aestivum L. cv. Cubus) durchgeführt. Statistisch signifikante (p < 0.05) Unterschiede wurden innerhalb der untersuchten Probengruppen sowohl in der Kornzahl, dem Gesamtsticksoff (Eiweißgehalt), als auch in der Gesamtausbeute gefunden, wobei in den meisten Fällen die konventionellen Proben höhere Kornzahlen und Gesamtsticksoff (Eiweißgehalte) aufwiesen. Eine mit der 2D DIGE kompatible Probenvorbereitungsmethode für Winterweizen wurde entwickelt und auf einen internen Winterweizenstandard sowie die entsprechenden Proben angewendet. Die organischen Proben waren im Vergleich mit den konventionellen Gegenstücken in allen Fällen durch eine kleinere Anzahl von signifikant (p < 0.05) stärker exprimierten Proteinspots gekennzeichnet. Gewisse Tendenzen in Richtung der Bevorzugung bestimmter Regionen von stärker ausgeprägten Proteinspots auf aufeinanderfolgenden 2D Abbildungen in Abhängigkeit von der landwirtschaftlichen Methode konnten zwar beobachtet werden, jedoch konnte kein universelles Markerprotein zur Unterscheidung von konventionell und biologisch angebautem Winterweizen identifiziert werden. Die rechnergestützte Verarbeitung der digitalisierten Kristallisierungsbilder mittels multivariater statistischer Analyse und der Regression partieller kleinster Quadrate ermöglichte eine 100%ig korrekte Vorhersage der landwirtschaftlichen Methode unbekannter Proben sowie der Beschreibung der Kristallisierungsbilder. Diese Vorhersage bezieht sich nur auf den hier verwendeten Datensatz (Proben einer Sorte von drei Standorten über zwei Jahre) und kann nicht ohne weiteres übertragen (generalisiert) werden. Die Ergebnisse deuten an, dass die Quantifizierung der beschriebenen Parameter ein hohes Potential zur Lösung der gestellten Aufgabe besitzt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, research projects such as PADLR and SWAP have developed tools like Edutella or Bibster, which are targeted at establishing peer-to-peer knowledge management (P2PKM) systems. In such a system, it is necessary to obtain provide brief semantic descriptions of peers, so that routing algorithms or matchmaking processes can make decisions about which communities peers should belong to, or to which peers a given query should be forwarded. This paper proposes the use of graph clustering techniques on knowledge bases for that purpose. Using this clustering, we can show that our strategy requires up to 58% fewer queries than the baselines to yield full recall in a bibliographic P2PKM scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis concerns with the main aspects of medical trace molecules detection by means of intracavity laser absorption spectroscopy (ICLAS), namely with the equirements for highly sensitive, highly selective, low price, and compact size sensor. A novel two modes semiconductor laser sensor is demonstrated. Its operation principle is based on the competition between these two modes. The sensor sensitivity is improved when the sample is placed inside the two modes laser cavity, and the competition between the two modes exists. The effects of the mode competition in ICLAS are discussed theoretically and experimentally. The sensor selectivity is enhanced using external cavity diode laser (ECDL) configuration, where the tuning range only depends on the external cavity configuration. In order to considerably reduce the sensor cost, relative intensity noise (RIN) is chosen for monitoring the intensity ratio of the two modes. RIN is found to be an excellent indicator for the two modes intensity ratio variations which strongly supports the sensor methodology. On the other hand, it has been found that, wavelength tuning has no effect on the RIN spectrum which is very beneficial for the proposed detection principle. In order to use the sensor for medical applications, the absorption line of an anesthetic sample, propofol, is measured. Propofol has been dissolved in various solvents. RIN has been chosen to monitor the sensor response. From the measured spectra, the sensor sensitivity enhancement factor is found to be of the order of 10^(3) times of the conventional laser spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ongoing growth of the World Wide Web, catalyzed by the increasing possibility of ubiquitous access via a variety of devices, continues to strengthen its role as our prevalent information and commmunication medium. However, although tools like search engines facilitate retrieval, the task of finally making sense of Web content is still often left to human interpretation. The vision of supporting both humans and machines in such knowledge-based activities led to the development of different systems which allow to structure Web resources by metadata annotations. Interestingly, two major approaches which gained a considerable amount of attention are addressing the problem from nearly opposite directions: On the one hand, the idea of the Semantic Web suggests to formalize the knowledge within a particular domain by means of the "top-down" approach of defining ontologies. On the other hand, Social Annotation Systems as part of the so-called Web 2.0 movement implement a "bottom-up" style of categorization using arbitrary keywords. Experience as well as research in the characteristics of both systems has shown that their strengths and weaknesses seem to be inverse: While Social Annotation suffers from problems like, e. g., ambiguity or lack or precision, ontologies were especially designed to eliminate those. On the contrary, the latter suffer from a knowledge acquisition bottleneck, which is successfully overcome by the large user populations of Social Annotation Systems. Instead of being regarded as competing paradigms, the obvious potential synergies from a combination of both motivated approaches to "bridge the gap" between them. These were fostered by the evidence of emergent semantics, i. e., the self-organized evolution of implicit conceptual structures, within Social Annotation data. While several techniques to exploit the emergent patterns were proposed, a systematic analysis - especially regarding paradigms from the field of ontology learning - is still largely missing. This also includes a deeper understanding of the circumstances which affect the evolution processes. This work aims to address this gap by providing an in-depth study of methods and influencing factors to capture emergent semantics from Social Annotation Systems. We focus hereby on the acquisition of lexical semantics from the underlying networks of keywords, users and resources. Structured along different ontology learning tasks, we use a methodology of semantic grounding to characterize and evaluate the semantic relations captured by different methods. In all cases, our studies are based on datasets from several Social Annotation Systems. Specifically, we first analyze semantic relatedness among keywords, and identify measures which detect different notions of relatedness. These constitute the input of concept learning algorithms, which focus then on the discovery of synonymous and ambiguous keywords. Hereby, we assess the usefulness of various clustering techniques. As a prerequisite to induce hierarchical relationships, our next step is to study measures which quantify the level of generality of a particular keyword. We find that comparatively simple measures can approximate the generality information encoded in reference taxonomies. These insights are used to inform the final task, namely the creation of concept hierarchies. For this purpose, generality-based algorithms exhibit advantages compared to clustering approaches. In order to complement the identification of suitable methods to capture semantic structures, we analyze as a next step several factors which influence their emergence. Empirical evidence is provided that the amount of available data plays a crucial role for determining keyword meanings. From a different perspective, we examine pragmatic aspects by considering different annotation patterns among users. Based on a broad distinction between "categorizers" and "describers", we find that the latter produce more accurate results. This suggests a causal link between pragmatic and semantic aspects of keyword annotation. As a special kind of usage pattern, we then have a look at system abuse and spam. While observing a mixed picture, we suggest that an individual decision should be taken instead of disregarding spammers as a matter of principle. Finally, we discuss a set of applications which operationalize the results of our studies for enhancing both Social Annotation and semantic systems. These comprise on the one hand tools which foster the emergence of semantics, and on the one hand applications which exploit the socially induced relations to improve, e. g., searching, browsing, or user profiling facilities. In summary, the contributions of this work highlight viable methods and crucial aspects for designing enhanced knowledge-based services of a Social Semantic Web.